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Abstract

Stability properties of IMEX (implicit-explicit) linear multistep methods
for ordinary and delay differential equations are analyzed on the basis of
stability regions defined by using scalar test equations. The analysis is closely
related to the stability analysis of the standard linear multistep methods for
delay differential equations. A new second-order IMEX method which has
approximately the same stability region as that of the IMEX Euler method,
the simplest IMEX method of order 1 is proposed. Some numerical results
are also presented which show superiority of the new method.

Keywords IMEX methods, stability regions, delay differential equations
MSC 65L06, 651.20

1 Introduction

We consider ordinary differential equations (ODEs) of the form

L~ F(t u) + 900, ult), (11)
which arise after spatial discretization of time-dependent partial differential equa-
tions (PDEs) of reaction-diffusion type or advection-diffusion type. Here, f denotes
a stiff term derived from the diffusion term, and g denotes a nonstiff or mildly stiff
term from the reaction or advection term. In many applications, f is linear and g
is nonlinear. In order to solve such equations efficiently, a special type of numerical
method called IMEX (implicit-explicit) method is often used, which is obtained by
applying an implicit formula with a good stability property to the f term and an



explicit formula to the g term. One of the simplest examples is the IMEX Euler
method (see, e.g., Ref. [8])

Upy1 = Uy + At.f(tn-l-la un+1) + Atg(tm ’U,n), (1'2)

which is obtained by applying the implicit Euler formula to the f term and the
explicit Euler formula to the g term. Here, At is the stepsize, t, = to+nAt, and u,
denotes an approximate value of u(t,). This method is of order 1 in accuracy; higher-
order IMEX methods have been constructed along the ideas of linear multistep
methods or Runge-Kutta methods (see Ref. [10], IV.4, and the references cited
therein). In this paper, we discuss IMEX methods of linear multistep type.

An IMEX linear multistep method for the equation (1.1) is represented as

k k k—1
Yo Qjuny =AY B Fltnyss Unys) + ALY B g(tnrg, Uniy).  (1.3)
j=0 =0 7=0

Here, o, B; denote the coefficients of a k-step linear multistep method. The coef-
ficients ;" are determined by 8 = f; + [ y; with the coeflicients ; of a suitable
extrapolation so as to incorporate (5 into the other coefficients. For study of stability
of such IMEX methods, Frank, Hundsdorfer & Verwer [6] have proposed

du
dt
as a test equation (see Refs. [2, 9, 14, 16, 17] for related studies), where Au(t) and

pu(t) correspond to the f term and the g term in (1.1), respectively. Application
of the method (1.3) to this test equation yields the difference equation

Au(t) + pu(t), A, p € C, (1.4)

k k k-1
D QUng; =2 Bitng; —w Y Biuny; =0, z2=AtN w=Atp (1.5)
j=0 7=0 j=0

The stability region S of the IMEX method is defined as a region of the parameters
(z, w) = (At A, At p) such that the zero solution of (1.5) is asymptotically stable.
We can study stability of the method on the basis of S in the similar manner as in
the case of the standard linear multistep methods (see, e.g., Ref. [7], Chapter V). If
a specific scheme is given, we can draw a figure of its stability region numerically by
the root locus method, which is useful for comparing stability of different methods.
But, S is a region in C? (~ R?*). It is not easy to construct a new scheme by adjusting
the parameters o, 3; and ; so as to enlarge the stability region S.

To overcome this difficulty, we consider, in addition to the equation (1.4), an
earlier test equation

du

i Au(t) + pu(t — 1), A, p€C, (1.6)



proposed by Barwell [3] in 1975 for study of stability of numerical method for delay
differential equations (DDEs). Here, 7 > 0 is a constant delay. When the stepsize
At is given in the form

At="_ (m >1: integer), (1.7)
m
an IMEX method can be applied to DDEs of the form
du
= = £ () +g(t, u(), u(t —7)). (1.8)

Through application of the IMEX method to the test equation (1.6), we can define
the so-called P-stability region Sp C C? so that Sp C S (see Section 2 for the
definition and Ref. [4] for general theory on stability of numerical methods for
DDEs). The P-stability region Sp characterizes a stability property of the IMEX
method for DDEs; and it is not difficult, in some cases, to enlarge Sp by making
use of similar techniques to those used in the stability analysis of the standard
linear multistep methods for DDEs. Enlarge S through enlarging Sp. This is the
fundamental idea of the present paper for construction of an IMEX method with
large S.

The paper is organized as follows. In Section 2, we state the definitions of the
stability and P-stability regions of an IMEX method, and show a theorem which
gives a basic relation between the two regions. In Section 3, we describe a technique
for analysis of P-stability regions, and construct a second-order method with a
superior stability property. In Section 4, we present numerical results which suggest
practicality of the new method.

2 Stability regions

We assume that the linear multistep method determined from «;, §; is of order
p > 1, and that ~y; satisfy p(kAt) = Z?;& v; p(jAt) + O(At?) for any sufficiently
smooth function ¢(t). This condition is rewritten as

k—1
Y jlyi=k, ¢=0,..,p—1 (2.1)
j=0

For example, in the case £ = p = 2, from the condition v +v; = 1, v1 = 2, the
coefficients 71, 7 are uniquely determined as 7, = 2, 79 = —1, which gives a linear
extrapolation. In general, when p = k, the pair v,_1, ..., Y is uniquely determined
from (2.1) and satisfies (¥ — (¢ —1)F = 527+, (7. The pair gives a polynomial
extrapolation. The condition (2.1) assures that the local error of the method (1.3)
is O(At**!) (see, e.g., Ref. [10], p.387, Theorem 4.2). If the method is zero-stable,
it converges with O(At”).
Introducing the polynomials

k k k—1
p(Q)= Yoy, o(Q)=38¢, () =D 8¢ (2.2)
j=0 j=0 §=0
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and putting

(G 2) = p(¢) —za(C), (2.3)
we can write the characteristic equation of the difference equation (1.5) in the form
(G 2) —wa™(¢) =0 (2-4)

and represent the stability region S of the method (1.3) as
S={(z,w)ec®: (24) = [(| < 1}. (2.5)

For example, in the case of the IMEX Euler method (1.2), it follows from p({) =
¢(—1, 0(¢) =¢, 0*(¢) =1 that the characteristic equation is ( — 1 — 2 —w = 0,
which is rewritten as ( = (1 +w)/(1 — z). Hence, the stability region is represented
as

S={(z,w) €C®: [14+w|<|l—2z}. (2.6)

The intersection of the stability region S and the z-plane {(z, 0) : z € C} is
identified with the region

Sa={zeCc:n2)=0 = [(|<1} (2.7)

in the complex plane, which corresponds to the standard stability region of the
implicit formula. For each z € S4, we denote by I, the set of all w such that (2.4)
has a root with |¢| = 1. This set is a curve in the complex plane represented in the

form
n(C; 2)

a*(¢)
which gives (a part of) the boundary of the z-section S N {(w, z) : w € C}. For
the IMEX Euler method, we have n((; 2)/0*(() = —1 + (1 — 2)(. Hence, I}, is a
circle centered at —1 with radius |1 — z| (Fig. 2.1 left). Restricting the variable z
onto the real line, we can regard the stability region as a solid figure in R X C ~ R3.
The right picture of Fig. 2.1 displays a three-dimensional view of S of the IMEX
Euler method, a (solid) cone obtained by aligning the disks |w + 1| < |1 — z| in the
z-direction.

A second-order two-step IMEX method defined with BDF2 (two-step BDF, a, =
3/2, a1 = =2, 00=1/2, fo=1, 1 =Fo=0) and 5 =2, 5 = =1 (m1 =2, %0 =
—1) is called the IMEX BDF2 method. In the case of this method, I', for negative
z is a simple closed curve as shown in the left picture of Fig. 2.2. The right picture
displays a three-dimensional view of S of the IMEX BDF2 method, which seems
contracted in all directions except for the positive real direction, compared with
that of IMEX Euler method (Fig. 2.1).

Under the condition (1.7) for the stepsize, an IMEX linear multistep method for
the DDE (1.8) is defined by

I, : C=¢€Y 0<6<2n, (2.8)

k k k—1
Do ajtny; =AY B f(tnrg, Ungy) + ALY B gltnrj, Unij, Unomij).  (2.9)
faur i=o =0



Figure 2.2: Stability region of the IMEX BDF2 method

Application of the method to the test equation (1.6) yields

k k k-1
Y o unri =2 Bjtnyj+w Y Bi Un-mtj, z=AtA, w=Aty, (2.10)
=0 =0 i=0

and the characteristic equation of the difference equation (2.10) is written in the
form

¢"n(¢ z) —wo™(¢) = 0. (2.11)
Using this equation, we define the P-stability region Sp of the IMEX method as
Sp= ) S&, S& ={(z,w)ec?: (211) = || <1}. (2.12)

m>0
By the definition, Sp C S, and putting

v, =inf{lw| : weTl,}, (2.13)
we can characterize the P-stability region as follows.

Theorem 1. Assume that the vectors (a, ..., ag) and (Bo, -.., Bk) are linearly in-
dependent, and consider the following statements:

(a) z€ Sa and |w| <7,; (b) (2, w) € Sp; (c) z€ Sa and |w| < 7,.
Then, we have (a) = (b) = (c).



Proof We first show that (a) = (b). Let || > 1 and z € S4. The equation (2.11)
is rewritten as i
)

oG
For any integer m > 0, the modulus of the left-hand side is greater than or equal to
1. On the other hand, since z € Sy, the right-hand side is holomorphic in |(| > 1,
and the modulus is less than or equal to

a*(¢)
n(¢; 2)

by the maximal modulus principle. If |w| < 7,, this value is less than 1, and hence
(2.14), or (2.11) never holds for any m > 0. This implies that (a) = (b).

We can prove that (b) = (c), for example, by making use of a theorem by
in 't Hout & Spijker [11] (see also in 't Hout & Spijker [12], Liu & Spijker [15], and
Ref. [4], p.310, Lemma 10.2.24). Since (o, ..., o) and (B, ..., Bg) are linearly
independent, 7n((; z) = 0 does not occur for any z € C. Hence, by Corollary 3 in
[11], if (2, w) satisfies (b), we have z € Sy and |wo(¢)| < |n(¢; 2)| for any || = 1,
which clearly implies (c). O

In the case of the IMEX BDF2 method, v, is the radius of an inscribed circle in
the curve I', (Fig. 2.3 left). Hence, Sp is regarded as a maximal cone included in S
and rotationally symmetric with respect to the z-axis (Fig. 2.3 right).

(2.14)

|w]
=, (2.15)
7z

lw| sup
¢I=1

Imw

Re w

Figure 2.3: P-stability region of the IMEX BDF2 method

In general, it is not difficult to compute an approximate value of v,. Let N be a
positive integer, and divide the interval [0, 27) into N equal parts: 0 = ¥y < 91 <
e <O =kAY < -+ <9y =21, AY =271/N. The curve I, is approximated by

1n(Ck; 2) 9
Fz,N: s Ck:e’k, kZO,...,N—l, 216
o (G (216)
and we have
Ve = A}l_I)n YoNs Yo,y =min{|z| 1 z € I, v} (2.17)

Hence, by taking a sufficiently large NV, we can obtain a proper approximate value
of 7,.



3 Analysis of P-stability regions

The stability region of the IMEX BDF2 method is much smaller than that of the
IMEX Euler method (2.6). Hereafter, we try to find a second-order IMEX method
with larger S through construction of a scheme with larger Sp than that of the IMEX
BDF2 method. The following theorem is a fundamental tool for this purpose, which
is inspired by Bickart’s results [5] in the early 80s concerning stability of the standard
linear multistep methods for DDEs.

For 0 < a <7/2 and r > 1, we put

D(a) ={z € C : |arg(—2)| < a} (3.1)
and
Q(a, 1) ={(z, w) € C* : z € D(a), rlw| < |z| sinfu(2) }. (3.2)
where 0,(z) = a — | arg(—z)|. In the case a = 7/2, they are written as
D(r/2)={z€C:Rez< 0} (=C7), (3.3)
Qn/2,7)={(z, w) € C* : rlw| < —Rez}. (3.4)
Imz
— |z| sin 6a(z)
Re z
— L(a)

Figure 3.1: The region D(«)

Theorem 2. Let 0 < a < 7/2, and assume that the implicit formula satisfies the
following two conditions:

(C1) Sac D(@); (Cp) o(Q)=0= (| <1

Furthermore, define the curve I'* in the complex plane by

r*: . (=¢€% 0<0<2n, 3.5
70 5:)
and put
r=sup{|lw| : wel"}. (3.6)
Then, we have r > 1 and
Sp D Q(a, T). (37)



Remark 3. The condition (C1) is a basic sufficient condition for A(«)-stability
of the implicit formula, and the condition (Cy) means the stability at the infinity.
In particular, the condition (Cy) for @ = w/2 corresponds to A-stability, which,
together with (Cy), gives L-stability (in terms of Runge-Kutta methods). Moreover,
a numerical method for DDEs is said to be P-stable if Sp D 2(w/2, 1) = {Jw| <
—Rez}. In [5], a method whose P-stability region includes §2(c, ) for some 0 <
a<7w/2and > 1 is called Pla, B]-stable method.

Proof Since the coefficients v; satisfy Ef;é v; =1 by (2.1), we have Ef;é B; =
Y¥20Bi 4 Be X520 1 = Xj—0 B; , which implies 0*(1)/o(1) = 1. Hence, the supre-
mum 7 is greater than or equal to 1.

Assume that |¢| > 1. It follows from (C;) and (Cs) that p(¢)/o(¢) — z # 0 for
any z € D(«), which means that p(¢)/c(¢) € C\ D(«). Hence, we have for z € D(«)

p(¢)

—= =z

()

(cf. Fig. 3.1), where L(«) is the boundary of D(«), i.e., L(a) = {2z € C: arg(—z2) =
a} U {0}. Moreover, the characteristic equation (2.11) is rewritten as

p(¢) e, 00

—L —z=(C"w .

a(¢) (<)
If rlw| < |z|sin B4(2), this equation does not hold, since the modulus of the left-hand
side is greater than or equal to |z|sinf,(z) by (3.8), and the modulus of the right-
hand side is less than |z|sinf,(z) by the maximal modulus principle. Therefore, we
have Sp D 2(a, 7). O

> in(f : 1€ —z| = |2|sinf,(z) (3.8)

T tel(a

(3.9)

IMEX Euler

) IMEX BDF2 J 110
1 —~

Re w

slope -1/3
-10

Figure 3.2: I'* of the IMEX Figure 3.3: v, of the IMEX
BDF2 method Euler and BDF2 methods

In the case of the IMEX Euler method, since o(¢) = ¢ and 0*(¢) = 1, the curve
I'* is just the unit circle {|w| = 1}, and hence r = 1. In the case of the IMEX
BDF2 method, I'* is a simple closed curve displayed in Fig. 3.2. The supremum r
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is attained at w = —3 as r = 3. The implicit Euler formula and BDF2 both satisfy
the conditions (C;) for & = 7/2 and (Cz). By Theorem 2, the P-stability region
of the IMEX Euler method includes the region {|w| < — Re z}; that of the IMEX
BDF2 method includes the region {3|w| < —Rez}. Fig. 3.3 displays the functions
v, for negative z. The graph of v, of the IMEX Euler method is the line —z itself;
that of the IMEX BDF2 method certainly lies above the line —z/3 (dotted line).
A third-order three-step method defined with BDF3 (a3 = 11/6, ap = =3, oy =
3/2, a0 = =1/3,083 = 1,8, = B = fp = 0) and B = 3,6 = =3,y = 1
(72 =3, 11 = =3, 7 = 1) is called the IMEX BDF3 method. As is well known (see,
e.g., Ref. [7], V.2), BDF3 satisfies (C;) for a = 86.03° and (Cj). It is also verified

that
N [l (Sl
¢|=1 ¢

Hence, Sp D 2(86.03°, 7). In particular, when z < 0, the inequality

=7. (3.10)

sin(86.03°)

w] < 22

2| (=—-0.1425z ) (3.11)
gives a sufficient condition for (z, w) to be included in Sp. Fig. 3.4 displays a
comparison of 7, of the method with the line —0.1425z (2 < 0), which is indicated
by the dotted line. This figure suggests that (3.7) in Theorem 2 is useful for estimate
of the size of the P-stability region.

IMEX BDF3

slope -0.1425 T

-50 -40 -30 -20 -10
Figure 3.4: v, of the IMEX BDF3 method

We look for a second-order method with larger Sp than that of the IMEX BDF2
method in the family of second-order two-step methods. Any second-order two-step
linear multistep method is represented in the form

a=a o =1—-2a ay=a-—1
(3.12)

1 1
/82:b7 51:§+a_2b7 50:§—a+ba

with the real parameters a, b, and the conditions (C;) for « = 7/2 and (C,) are

equivalent to the condition

1 a
> - b > = 3.13
a>3, b> 3 (3.13)

for a, b (Hairer & Wanner [7], p.249, Exercise V.1.5). Since p(() is written as p(¢) =
(aC+1—a)(¢—1), the condition a > 1/2 also implies zero-stability of the method. In
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particular, the pair (a, b) = (3/2, 1) corresponding to BDF2 satisfies the condition
(3.13). Moreover, it follows from v; = 2, 7o = —1 that 8 =1/2+a, 8} =1/2 —q,
and simple but tiresome computation (cf. Ref. [1] for similar computation) shows
that, under the condition (3.13), the supremum r is written as

a ( a(4a2—2a+1))

b <

2b—a 402 + 1

"= 4a% — 1 (b>a(4a2—2a+1)) ’
16byE+n ~  da’+1

(3.14)

where

£ = 2(2b—2a+1)(b+ 2d*> — a),
n = (4a® —1)® — 8(2a — 1)%b — 32%.

In particular, when a = b, this is reduced to

_ 20+ 1

r= .
20— 1

(3.15)

Thus, we can obtain a method satisfying (C;) for & = 7/2 and (Cy) whose r is
sufficiently close to 1, by taking a = b sufficiently large. But, r = 1 cannot be
attained for the family (3.12). In fact, simple computation shows that the point w
on the curve I'* takes the modulus |w| > 1 in a neighborhood of w =1 (cf. Fig. 3.2)
for any a, b.

Taking a = b = 20, we obtain » = 1.0513 and I, for the corresponding method,
displayed in Fig. 3.5. This shows that the stability region of the method is much
larger than that of the IMEX BDF2 method and close to that of the IMEX Euler
method (Fig. 2.1). We refer to the method as the stabilized second-order method.

Imw
z=-30
IMEX BDF2
z=-30
z=0
Re w \.. \ Rew
z=-10 ‘/{ 30
z=-20

Figure 3.5: I, of the IMEX BDF?2 (left) and stabilized method (right)
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4 Numerical examples

In this section, we illustrate superiority of the new method using two numerical
examples. The first example is the advection-diffusion equation

oU U oU
P _pZ A% >0, 0<z<1 4.1
ot g2 g 120 Oswsd (4.1)

with the initial and boundary conditions
Ut,0)=1,U(t,1)=0,t>0, U, z)=¢(z), 0<z<1. (4.2)

Here, D and A are positive constants, and ¢(x) is a given function. It is know (see,
e.g., [10], p.84) that this problem has the stationary solution

A

U(t, z) = (eD — eD®)/(eD —1). (4.3)

Fig. 4.1 displays behavior of an exact solution of the equation (4.1).

Figure 4.1: Solution of (4.1) for D =1, A =10, ¢(z) = (1 —z)?

Let M be a positive integer, h := 1/M and define the mesh points o5 = 0 <
Ty <---<xj=jh<--<zpy =1 We use the notation u’(¢) for an approximate
function of U(t, x;). By replacing the spatial derivatives with the standard second-
order central differences, we obtain the semi-discrete approximation

du
— = (Lu(t) +b) — Mu(?), (4.4)

where u(t) = [u'(t), ..., v ()], b=[D/h*+ A/(2h), 0, ..., 0]", and

-2 1 0 -+ 0 ] 0 1 0 07
1 -2 1 --- 0 -1 0 1 0
D A
L=—| 0 1 =2 0 M=—| 0 -1 0 0
Rz | ’ 2h
. . . . 1 . : .. 1
L0 - 0 1 -2 | 0 - 0 -1 0
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For comparison we solved the equation (4.4) using the IMEX Euler, IMEX BDF2
and stabilized second-order methods with various stepsizes of the form At = 1/m,
where m is a positive integer. The parameter values are D =1, C' = 10, M = 1000,
and the initial function is ¢(z) = (1—z)%. With the two-step methods, we computed
starting values at ¢ = t; using the IMEX Euler scheme. For each method it is
observed that the numerical solution tends to a stationary solution if At is sufficiently
small, but it diverges if At is larger than a certain value. For example, in the case
of IMEX BDF2 method, the asymptotic property of the numerical solution changes
between m = 53 and m = 54, which can be seen from Figs. 4.2 and 4.3. The former
displays the time evolution of the approximate values uM/? ~ U(t,, 1/2) at the
midpoint of the interval 0 < x < 1 in the cases m = 53 and m = 54. The latter
displays log;q Am With Ay, = maxs<;, <10 |[uM/?| for 50 < m < 60.

Fig. 4.3 displays the results with the IMEX Euler and stabilized methods. We
can see that these methods produce stable solutions with much smaller m, i.e., much
larger At.

Figure 4.2: Numerical solution of (4.4) by the IMEX BDF2 method

logio Am

- O

o
0 o

50 51 52 53 54 55 56 57 58 59 —m
Figure 4.3: Numerical results by the IMEX BDF2 method

Another example is the delay reaction-diffusion equation (cf. Wu [18], p. 220)

oUu 0*U X
o Y a2 - > <z< .
ot D8x2 +pUt—71,2)1+Ut x)°], t>0, 0<z<1, (4.5)

with the initial and boundary conditions
U, 0)=U(t,1)=0,t>0, Ult,z) =90, z), -7<t<0,0<z<1, (4.6)

where 7 is a constant delay, D is a positive constant, and pu is a real parameter.
By the same spatial discretization as is used for the first example, we obtain the

12



l0g10 Am

Stabilized Method

11 12 13 14 15 16 17 18 19 20 21—m
Figure 4.4: Numerical results by the IMEX Euler and stabilized method

semi-discrete approximation

W — L) + g(ult), ult - 7)), (4.7
where L is the same matrix as before and ¢ is an R ~!-valued function whose j-th
component is pu? (t —7) [1+u? (¢)?]. If M > 3, all the eigenvalues of L are less than
—8D; if, in addition, p satisfies |u| < 8D, the zero solution of (4.7) is asymptotic
stable for any 7 > 0 (see, e.g., Koto [13], Section 4). Damped oscillation is typical
behavior of the exact solution.

Let 7 =1, D = 10, 4 = —80 and M = 1000. In the case of the IMEX
BDF2 method, the asymptotic property of the numerical solution changes with the
stepsize At = 7/m (= 1/m). The numerical solution tends to zero when m > 62,
but it diverges when m < 61 (Fig. 4.5). Fig. 4.5 displays the time evolution of the
approximate values u/2? at the midpoint for the initial function ¢(t, z) = z(1 — z);
the IMEX Euler scheme is used for computation of the starting values as before.

On the other hand, with the IMEX Euler and stabilized second-order methods,
stable numerical solutions are obtained for any positive integer m. For example,
Fig. 4.6 shows the behavior of a solution of (4.7) by the stabilized method with
m = 1. The same numerical results have been obtained with the IMEX FEuler
method.

Acknowledgment I would like to thank Yuka Hiraide, a student in a master course
of our university for her help with the numerical experiments.
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