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Abstract

The goal of regression analysis is to describe the stochastic relationship between a vector of inputs
x and a scalar output y. This can be achieved by estimating the entire conditional density p(y|x). In
this paper we present a new approach for nonparametric conditional density estimation. We develop a
piecewise-linear path-following method for kernel-based quantile regression. It enables us to estimate
the cumulative distribution function (CDF) of conditional density p(y|x) in piecewise-linear form.
After smoothing the estimated piecewise-linear CDF, we obtain nonparametric conditional density
estimate p̂(y|x) for all x in the input domain. Theoretical analyses and numerical experiments are
presented for showing the effectiveness of the approach.

1 Introduction

The goal of regression analysis is to describe a statistical relationship between a vector of inputs x and a
scalar output y. The stochastic dependency of y on x can be fully described by modeling the conditional
density p(y|x). In this paper, we are concerned with the problem of estimating conditional density from
a set of input-output training pairs. We denote training set as {(xi, yi)}n

i=1, where xi ∈ X is a vector of
inputs from domain X and yi ∈ R is a scalar output.

Figure 1 shows an example of conditional density estimation for a data set on bone mineral density
(BMD) in adolescent.1 In this example, the relative change in spinal BMD is studied as a function of age,
and measurements of 485 adolescents {(xi, yi)}485i=1 are displayed as a scatter plot. Using the methodology
introduced in this paper we estimated the densities of the relative change in spinal BMD for each of 12, 18,
and 24 years old adolescents. These estimated conditional densities are superimposed in the scatter plot
(their scales are adjusted for display). Conditional density estimation is an effective tool for exploratory
data analysis. It provides deeper insight into the underlying mechanism of the data than conventional
regression analysis does.

In many regression analyses, strong assumptions are usually imposed for the structure of conditional
densities. The regression model with the simplest structure is represented as

yi = µ(x) + εi, E(εi) = 0, i = 1, ..., n, {εi}n
i=1 i.i.d., (1)

where µ : X → R is a deterministic function and {εi}n
i=1 are independently and identically distributed zero

mean random variables. The model (1) is sometimes called location-shift model because only the location
of the conditional densities depends on the inputs. The location function µ in (1) can be estimated via

1The data set is analyzed in Hastie et al. (2001) and available from its web site.
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Figure 1: An example of conditional density estimation.

least-square fit etc. The density of ε can be easily estimated using the residuals from the fit. In many
cases, it is often assumed that ε is normally distributed.

There is a more general model in which not only the location but also the scale of conditional density
depends on the inputs. It is called location-scale model or heteroscedastic model, and represented as

yi = µ(x) + σ(x) · εi, E(εi) = 0, i = 1, ..., n, {εi}n
i=1 i.i.d., (2)

where σ : X → R+ is a positive-value function. In this model we need to estimate scale function σ as
well as location function µ. If parametric representation of ε is provided, maximum likelihood method
can be used to estimate µ and σ. In the literature of neural networks, the model (2) is sometimes called
input-dependent-variance model. Nix and Weigend (1994) and Williams (1996) implemented location-
scale model using multi-layer perceptron (MLP) with an assumption that ε is normally distributed.
Bishop (1994) proposed a more general and useful approach called mixture density networks (MDN).
MDN describes conditional density by mixture of parametric distributions. All the involving parameters
are estimated as the outputs of a MLP using maximum likelihood criterion.

Several conditional density estimators have been studied in the framework of nonparametric smoothing
(Hyndman et al., 1996; Fan et al., 1996; Hall et al., 1999). In these methods, conditional densities are
estimated using weighted version of traditional kernel density estimation. Roughly speaking, when we
estimate p(y|x0) for a certain x0 ∈ X , the “weight” of yi is determined based on the distance between
x0 and xi. If the distance is large, small weight is assigned to yi and vice-versa. These approaches are
applicable only to one or two-dimensional input problems because of the curse of dimensionality.

In this paper we propose a different approach for conditional density estimation. The building block of
our approach is quantile regression (Koenker and Bassett, 1978). Quantile regression is a tool to estimate
the quantiles of conditional density p(y|x) as functions of x. For 0 < τ < 1, the τ -th conditional quantile
function fτ : X → R is estimated by the following minimization problem

f̂τ = arg min
f∈F

n∑

i=1

ψτ (yi − f(xi)), ψτ (r) =
{

(1− τ)|r|, if r ≤ 0,
τ |r|, if 0 < r.

(3)
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where F is a certain class of functions. In Takeuchi et al. (2006) and Li et al. (2007), kernel-based quantile
regression (KQR) was presented. KQR inherited many desirable properties of kernel-machines. The
solution is (almost) unique and guaranteed to be globally (not locally) optimal because it is formulated
as convex (quadratic) optimization problem. It can be applied to high-dimensional or structured input
problem with the use of kernel-trick. Figure 2 shows some conditional quantile functions estimated by
KQR for BMD example.

Figure 2: An example of kernel quantile regression (KQR).

A family of conditional quantile functions fτ at all the continuum of τ ∈ (0, 1) provide a full description
of the conditional density p(y|x). Our main idea introduced in this paper is to develop a piecewise-linear
path-following method (Hastie et al., 2004) for KQR in order to estimate the solution path of conditional
quantile functions for all τ ∈ (0, 1). This enables us to estimate the cumulative distribution function
(CDF) of conditional density p(y|x) in piecewise-linear form. After smoothing the CDF, we obtain
nonparametric conditional density estimate p̂(y|x) as illustrated in Figure 1.

Our conditional density estimator has several advantages. Compared with the works by Nix and
Weigend (1994) and Williams (1996), our estimator is more flexible because it does not assume any para-
metric form of the conditional density distributions. The normal mixture representation by MDN (Bishop,
1994) is a useful approach, but it is still in the framework of parametric density estimation. The works
by Hyndman et al. (1996); Fan et al. (1996); Hall et al. (1999) are applicable only to one or two input
dimensional problems, but ours can be straightforwardly applied to high-dimensional or structured input
problems with the use of kernel-trick.

The paper is organized as follows. In section 2 we briefly review KQR and summarize the optimality
conditions. In section 3 we describe the piecewise-linear path-following algorithm for KQR. In section 4
we discuss how to estimate conditional density from the piecewise-linear solution path. In addition, we
provide some theoretical statements on our conditional density estimator. In section 5 we empirically
examine the performances of our conditional density estimator. We close in section 6 with some concluding
remarks and future works.

2 Kernel Quantile Regression (KQR)

In this section, we summarize the kernel-based quantile regression (KQR) studied in Takeuchi et al.
(2006). They studied a nonparametric model for conditional quantile function by considering a linear
model in a Reproducing Kernel Hilbert Space (RKHS). The model with quantile order τ ∈ (0, 1) is
written as

fτ (x) = β>τ Φ(x) + βτ0,

where Φ is the feature map implicitly defined by a kernel K, βτ is a vector of slope parameters, and βτ0

is a scalar intercept parameter for the linear model in the RKHS. The superscript> denotes the transpose
of vectors or matrices. The quantile regression estimator (3) for fτ with a L2 regularizer yields

min
βτ ,βτ0

n∑

i=1

ψτ (yi − (β>τ Φ(xi) + βτ0)) +
λ

2
β>τ βτ , (4)

where λ ∈ R+ is a positive scalar parameter to control the degree of regularization.
The problem (4) is rewritten as the following constrained minimization problem:

min
βτ ,βτ0,{ξ+

τi}n
i=1,{ξ−τi}n

i=1

n∑

i=1

(τξ+τi + (1− τ)ξ−τi) +
1
2
λβT

τ βτ (5)

s.t. yi − βT
τ Φ(xi)− βτ0 − ξ+τi + ξ−τi = 0, ξ+τi ≥ 0, ξ−τi ≥ 0, ∀i,
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where {ξ+τi}n
i=1, {ξ−τi}n

i=1 are slack variables. The Lagrange primal function of (5) is represented as

Lτ =
n∑

i=1

{τξ+τi + (1− τ)ξ−τi}+
1
2
λβT

τ β

+
n∑

i=1

ατi{yi − βT
τ Φ(xi)− βτ0 − ξ+τi + ξ−τi} −

n∑

i=1

(η+
τiξ

+
τi + η−τiξ

−
τi),

where {ατi ∈ R}n
i=1, {η+

τi ∈ R+}n
i=1 and, {η−τi ∈ R+}n

i=1 are the Lagrange multipliers. Letting the
derivatives of Lτ w.r.t. primal variables βτ , βτ0, {ξ+τi}n

i=1 and {ξ−τi}n
i=1 be zero, we have

βτ =
1
λ

n∑

i=1

ατiΦ(xi),
n∑

i=1

ατi = 0, η+
τi = τ − ατi, η

−
τi = (1− τ) + ατi, ∀i.

In addition, optimal solution needs to satisfy

ξ+τiη
+
τi = ξ+τi{τ − ατi} = 0, ∀i, ξ−τiη

−
τi = ξ−τi{(1− τ) + ατi} = 0, ∀i.

These optimality conditions are summarized as

yi > fτ (xi) =⇒ ατi = τ, (6a)
yi = fτ (xi) =⇒ τ − 1 ≤ ατi ≤ τ, (6b)
yi < fτ (xi) =⇒ ατi = τ − 1, (6c)

n∑

i=1

ατi = 0. (6d)

If there are non-bounded ατi ∈ (τ − 1, τ) at optimality, the intercept βτ0 is determined using any one of
these by

βτ0 = yi − 1
λ

n∑

j=1

ατjKij , {i : τ − 1 < ατi < τ},

otherwise, we can only specify the range of βτ0 as

max
{i:ατi=τ−1}

{yi − 1
λ

n∑

j=1

ατjKij} ≤ βτ0 ≤ min
{i:ατi=τ}

{yi − 1
λ

n∑

j=1

ατjKij}. (7)

The τ -th conditional quantile model is represented by

fτ (x) =
1
λ
{

n∑

i=1

ατiK(x,xi) + ατ0}, (8)

where ατ0 = λβτ0 is introduced for notational simplicity.

3 Kernel Quantile Regression Path

In recent machine learning literature, piecewise-linear path-following algorithms of several types of kernel
machines have been investigated. Hastie et al. (2004) used piecewise-linear path-following algorithms
to efficiently compute the solutions of support vector machine for various regularization parameters.
Bach et al. (2006) applied piecewise-linear path-following algorithms to obtain ROC curves for binary
classification problem. Recently, Li et al. (2007) developed an algorithm for the solution path with respect
to the regularization parameter λ for kernel quantile regression using the same approach as Hastie et al.
(2004).
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In this paper, we use piecewise-linear path-following algorithm to obtain a continuum of the estimates
of conditional quantiles in all τ ∈ (0, 1).2 The model of τ -th conditional quantile function (8) is charac-
terized by n+ 1 parameters {ατi}n

i=0. We investigate how these parameters change with τ ∈ (0, 1), and
show that they are described as piecewise-linear functions of τ . Let us define the following sets:

I+
τ

def= {i | yi > fτ (xi), ατi = τ},
I0

τ
def= {i | yi = fτ (xi), ατi ∈ [τ − 1, τ ]}, (9)

I−τ def= {i | yi < fτ (xi), ατi = τ − 1}.

From the optimality conditions (6), each training data point is a member of any one of these sets. Let us
define event point as the point in [0, 1] at which any one of the training points moves from one of the above
three sets to another, and call such movement as event. Our algorithm starts with τ = 0 and increases
it toward 1. As τ increases, the algorithm keeps track all the events. Let the number of events as L and
denote the sequence of event points as 0 = τ0 ≤ τ1 ≤ τ2 ≤ ... ≤ τ` ≤ ... ≤ τL = 1. It will be shown that
the parameters {ατi}n

i=0 are linear in τ between any two event points [τ`, τ`+1], l = 0, 1, ..., L− 1.

3.1 Linearity of the solution path between two event points

First, we consider the solution path of KQR between two event points τl and τl+1, l = 0, 1, ..., L − 1.
Here, we omit the subscript τ to denote three sets in (9) because the members of these three sets are
invariant between two event points. Let us denote the size of I0 as n0 and let the first n0 elements be
the members of I0 without loss of generality. Also, let K0 be the n0 × n0 matrix with (i, j)-th entry Kij

for i and j in I0, and 1n0 be n0 vector of 1. In this subsection, we assume I0 is not empty (i.e. n0 > 0).
We deal with the case of empty I0 in 3.3.

In the interval τ` ≤ τ ≤ τ`+1, for each j ∈ I0,

fτ (xj)− fτl
(xj) =

1
λ
{

n∑

i=1

ατiKij + ατ0} − 1
λ
{

n∑

i=1

ατliKij + ατl0}

=
1
λ
{

n∑

i=1

(ατi − ατli)Kij + (ατ0 − ατl0)}

=
1
λ
{
∑

i∈I0

(ατi − ατli)Kij +
∑

i∈I+∪I−
(ατi − ατli)Kij + (ατ0 − ατl0)}

=
1
λ
{
∑

i∈I0

(ατi − ατli)Kij + (τ − τl)
∑

i∈I+∪I−
Kij + (ατ0 − ατl0)}

= 0,

where the fourth equality holds because ατi = τ, ατ`i = τ`,∀i ∈ I+ and ατi = τ −1, ατ`i = τ`−1,∀i ∈ I−
from (6a) and (6c), respectively. The last equality holds simply because fτ (xj) = fτl

(xj) = yj ,∀j ∈ I0

from (6b). Also from (6d)

n∑

i=1

ατi −
n∑

i=1

ατli =
∑

i∈I0

(ατi − ατli) +
∑

i∈I+∪I−
(ατi − ατli)

=
∑

i∈I0

(ατi − ατli) +
∑

i∈I+∪I−
(τ − τl)

=
∑

i∈I0

(ατi − ατli) + (n− n0)(τ − τl) = 0.

2A preliminary version of the piecewise-linear path-following algorithm described in 3.1 and 3.2 was presented at Inter-
national Joint Conference on Neural Network in July, 2006.
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We can combine these n0 + 1 equations as follows:

[
0 1>n0

1n0 K0

]



ατ0 − ατl0

ατ1 − ατl1

ατ2 − ατl2

...
ατn0 − ατln0




=




n0 − n
−∑

i∈I+∪I− Ki1

−∑
i∈I+∪I− Ki2

...
−∑

i∈I+∪I− Kin0




(τ − τl). (10)

Solving the linear system of equations, we can write

ατj − ατlj = c`j(τ − τl), j = 0, j ∈ I0,

where



c`0
c`1
c`2
...

c`n0




=
[

0 1>n0

1n0 K0

]−1




n0 − n
−∑

i∈I+∪I− Ki1

−∑
i∈I+∪I− Ki2

...
−∑

i∈I+∪I− Kin0



.

Also for j ∈ I+ ∪ I−,

ατj − ατlj = τ − τl, j ∈ I+ ∪ I−,
and we define c`j = 1 for all j ∈ I+ and I−. From these results, we can conclude that the KQR
parameters {ατi}n

i=0 are linear in τ between any two event points.

3.2 How to find events

The next event point τl+1 is found when one of the followings happens:

OUT+ : One of the training points moves from I0
τ to I+

τ ;

OUT- : One of the training points moves from I0
τ to I−τ ;

IN : One of the training points moves from I+
τ or I−τ to I0

τ .

From the optimality conditions (6a) and (6c), OUT+ event and OUT- event happen when

ατi = ατ`i + c`i(τ − τ`) = τ, for some i ∈ I0
τ

ατi = ατ`i + c`i(τ − τ`) = τ − 1, for some i ∈ I0
τ ,

respectively. From the optimality condition (6b), IN event is found when

fτ`
(xi) =

1
λ
{

n∑

j=1

ατjKij + ατ0}

=
1
λ
{

n∑

j=1

[ατ`j + c`j(τ − τ`)]Kij + [ατ`0 + c`0(τ − τ`)]} = yi,

for some i ∈ I+
τ ∪ I−τ .

Among these, the smallest τ ≥ τ` is chosen as the next event point, i.e.

τ`+1 =
≥τ`

min
i∈I0

τ`
, j∈I+

τ`
∪I−τ`

{ατ`i − c`iτ`
1− c`i

,
ατ`i − c`iτ` + 1

1− c`i
, τ` +

λ{yj − fτ`
(xj)}∑n

k=1 c`kKjk + c`0

}
, (11)

where we used
≥a

min
i
{zi} as a simplified notation of min

i
{zi|zi ≥ a}.
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3.3 Empty I0
τ and the boundary conditions

We need to develop a way to deal with the empty I0
τ situations, and establish the initial and terminal

conditions of the KQR solution path. The initial (τ = 0) and the terminal (τ = 1) states of the KQR
solution path can be considered as special cases of the empty I0

τ situations. Thus, we first examine
the situations where I0

τ is empty, and use the obtained result to describe the initial and the terminal
conditions.

The following lemma shows I0
τ can be empty at most n+ 1 isolated points in τ ∈ [0, 1].

Lemma 1. I0
τ is empty only if τ ∈ {0, 1

n ,
2
n , ...,

n−1
n , 1}.

The proof is given in A.1. When I0
τ is empty, the derivation of the piecewise-linear solution path in the

previous subsection fails. Suppose that I0
τ∗ is empty at τ∗ ∈ {0, 1

n ,
2
n , ...,

n−1
n , 1}. Then, from (7),

max
i∈I−

τ∗
(λyi −

n∑

j=1

ατ∗jKij) ≤ ατ∗0 ≤ min
i∈I+

τ∗
(λyi −

n∑

j=1

ατ∗jKij).

From Lemma 1, for 0 < ε < 1
n , I0

τ∗−ε and I0
τ∗+ε are not empty. It indicates that the following two events

occur at τ = τ∗. In the first event one last element of I0
τ∗ moves out and I0

τ∗ becomes empty. In the
second event one new element moves in I0

τ∗ . Denote l∗ be the index of the first event. The next lemma
specifies which element moves out from I0

τ∗ at l∗ and which element moves in I0
τ∗ at l∗ + 1-th event.

Lemma 2. When I0
τ∗ is empty, if the sample size n > 1,

i−max = arg max
i∈I−

τ∗
{λyi −

n∑

j=1

ατ∗jKij}, (12)

moves out from I0
τ∗ at l∗-th event and

i+min = arg min
i∈I+

τ∗
{λyi −

n∑

j=1

ατ∗jKij}. (13)

moves in I0
τ∗ at l∗ + 1-th event, where l∗ denotes the index of the event that I0

τ∗ becomes empty.

The proof is given in A.2.From Lemma 2, we can develop the algorithm for empty I0
τ cases. If it happens

that I0
τ becomes empty at l∗-th event we set the next event point

τl∗+1 = τl∗ ,

ατl∗+1i = ατl∗ i for all i ∈ {1, ..., n},

ατl∗+10 = min
i∈I+

τl∗
{λyi −

n∑

j=1

ατl∗ jKij}.

Interestingly, the non-uniqueness of the solution at τ with empty I0
τ corresponds to the non-uniqueness

of the ordinary sample quantiles in unconditional settings.3 If all of our training inputs {xi}n
i=1 take

same values, our conditional quantile estimator reduces to ordinary unconditional sample quantiles. In
this case, the empty I0

τ situation examined in this subsection occurs exactly n− 1 times in τ ∈ (0, 1) at
τ = 1

n ,
2
n , ...,

n−1
n .

Using this result, we can describe the initial and the terminal stages of the algorithm. It is easy to
note that, when τ = 0,

ατ1 = ... = ατn = 0, ατ0 < min{y1, ..., yn}

3For example, consider a univariate sample Y1, Y2, ..., Yn and denote the r-th smallest, 1 ≤ r ≤ n, of the Y ’s as Y(r).
Then, for n odd, the sample median is uniquely defined as Y(n+1)/2, but for n even, it is not uniquely defined, i.e., any
number between Y(n/2) and Y(n/2+1) is the sample median.

7



satisfy the optimality conditions (6a) ∼ (6d). In this case, all the training data points {1, ..., n} are in
I+

τ , the special case of empty I0
τ0

. Using the result of the second part of Lemma 2, we can initialize the
algorithm at τ = 0 with

ατ1 = ... = ατn = 0, ατ0 = min
i∈I+

τ

{λyi −
n∑

j=1

ατjKij} = λ min
i=1,...,n

{yi},

where I0
τ contains only arg mini{yi} and I+

τ contains the rest of the training data points. Similarly, the
algorithm is terminated at τ = 1 with

ατ1 = ... = ατn = 1, ατ0 = max
i∈I−τ

{λyi −
n∑

j=1

ατjKij} = λ max
i=1,...,n

{yi},

where I0
τ contains only arg maxi{yi} and I−τ contains the rest of the training data points.

3.4 KQR-path algorithm

The piecewise-linear path-following algorithm for KQR (KQR-path algorithm) is summarized as follows:

Input. Provide training data set {(xi, yi)}n
i=1, kernel function K, and regularization parameter λ.

1. Set l = 0, τl = 0, ατ`i = 0 for i = 1, ..., n, and ατ`0 = λmini=1,...,n{yi}. Let arg mini=1,...,n{yi} be the
member of I0

τ`
and the rest of the training data points be the member of I+

τ`
. Go to 2.

2. If I0
τ`

is empty, go to 3. Otherwise, go to 4.

3. Set τ`+1 = τ`, ατ`+1 i = ατ`i for i = 1, ..., n, and ατ`+1 0 = mini∈I+
τ`
{λyi −

∑n
j=1 ατ`jKij}. Go to 5.

4. Solve the linear system of equations (10) to obtain the piecewise-linear functions of {ατi}n
i=0 for

τ` < τ < τ`+1. Find the next event point τ`+1 using (11). Set ατ`+1i, i = 0, 1, ..., n using the
obtained piecewise-linear functions. Go to 5.

5. Update the three sets in (9). Set ` = `+ 1. If I0
τ`

contains only arg maxi=1,...,n{yi} and I−τ`
contains

the rest of training data points, go to 6. Otherwise, go back to 2.

6. Set L = `+1, τL = 1, ατLi = 1 for i = 1, ..., n, ατL0 = λmaxi=1,...,n{yi}, and terminate the algorithm.

Output. Obtain a sequences of event points: τ0, τ1, ..., τL, and a sequences of parameter vectors: ατ0 ,ατ1 , ...,ατL
,

where ατ`
=

[
ατ`0 ατ`1 . . . ατ`n

]>.

The discussion on the computational complexity of the regularization-path algorithm in Hastie et al.
(2004) similarly applies to the KQR-path algorithm. At each event, the main computational cost is
solving the linear system of equations (10). With the use of rank-one update of the factorizations of
the left-hand-side matrix in (10), it involves O(|I0

τ`
|2) complexities. For finding the next event in (11),

we need to compute
∑n

j=1 αjKij for all i ∈ I+
τ`
∪ I−τ`

. Using the fact that αj = τ` for j ∈ I+
τ`

and
αj = τ` − 1 for j ∈ I−τ`

, we can efficiently update
∑

j∈I+
τ`
αjKij and

∑
j∈I−τ`

αjKij . Thus, we actually
need to compute

∑
j∈I0

τ`

αjKij for all i ∈ I+
τ`
∪ I−τ`

, and it requires O(|I0
τ`
|(|I+

τ`
| + |I−τ`

|)) computations.

If we denote the maximum size of I0
τ`
, ` = 0, 1, ..., L as m, then the entire algorithm has O(m2L+mnL)

complexity. As conjectured in other path-following studies of kernel machines (Hastie et al., 2004; Bach
et al., 2006), our empirical results also indicated that the number of events L isO(n). With this conjecture,
the computational complexity of the KQR-path algorithm is O(m2n+mn2), which is similar to that of
solving KQR for a single fixed τ .

At any IN event of the KQR-path algorithm, if the left-hand-side matrix of (10) becomes singular,
the solution is not unique. In this case, we need to specify the subspace of optimal solutions and develop
a way to continue the path-following. This can occur if and only if the kernel matrix K is not strictly
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positive definite in the subspace {z ∈ Rn | 1>n z = 0, zj = 0, ∀j ∈ I+
τ`
∪ I−τ`

}. In the case of Gaussian
kernel, this degeneracy can happen if and only if there are two or more identical training examples (tied
both in x and y). Such identical training examples can be detected in pre-processing stage, and we can
easily cope with the situation. For example, if training examples i1 and i2 are identical, we can impose
a constraint that the corresponding parameters αi1 and αi2 must take same values. This additional
constraint can enable us to avoid the degeneracy situation. In the case of other kernels, degeneracies
can occur (although rarely in practice) even if there are no identical training examples. Our current
implementation can cope with degeneracies caused by identical training examples. But it can fail in
the case of other type of degeneracies.4 We note that this degeneracy problem on the path-following or
related active set algorithms for kernel machines still remains to be an open problem in the literature.
At the best of our knowledge, any existing studies, including Cauwenberghs and Poggio (2001); Hastie
et al. (2004); Bach et al. (2006); Laskov et al. (2006); Li et al. (2007), do not provide satisfactory answer
to this problem.

4 KQR-path and conditional probability density

The entire solution path of kernel quantile regression (KQR) in τ ∈ [0, 1] provides nonparametric descrip-
tions of conditional probability densities p(y|x) for any x ∈ X .

4.1 Conditional density estimation from KQR-path

The following theorem states that KQR-path algorithm describes the cumulative distribution function
(CDF) of conditional density p(y|x) in piecewise-linear form.

Theorem 1. Given an arbitrary input x0 ∈ X , the CDF of the distribution p(y|x = x0) is represented
as

F̂y|x=x0(τ) =
τ`+1 − τ

τ`+1 − τ`
F̂y|x=x0(τ`) +

τ − τ`
τ`+1 − τ`

F̂y|x=x0(τ`+1), for τ` < τ < τ`+1,

where F̂y|x=x0(·) is the estimated CDF of p(y|x = x0) by KQR-path.

The proof is given in A.3. Figure 3 shows examples of estimated piecewise-linear CDFs of p(y|x = 12),
p(y|x = 18), and p(y|x = 24) in BMD example. Unfortunately, the estimated CDF is not necessarily
monotonically increasing function. This undesirable property corresponds to notorious quantile crossing
problem. Quantile crossing refers to the situations that two or more estimated conditional quantile
functions can possibly cross or overlap. This can occur because conditional quantile functions at different
τs are individually estimated in quantile regression. See He (1997) and Takeuchi et al. (2006) for details
on quantile crossing problem.

To obtain smooth conditional density estimates, we need to correct quantile crossing and smooth
the piecewise-linear CDF. There are many possible approaches for these purposes. For example, we can
apply constrained smoothing to estimated piecewise-linear quantile functions or CDFs. There are many
smoothing techniques that guarantees the resulting smoothed functions to be monotonically increas-
ing (for example, Ramsay, 1998; Mammen et al., 2001; Dette et al., 2006). In this paper, we use another
simple approach. First, n samples are uniformly sampled from piecewise-linear CDFs. Then uncondi-
tional density estimation technique (see, for example, Silverman, 1986; Wand and Jones, 1994) is applied
to those n samples to obtain smoothed conditional density estimate. For the experiments described in
the next section, we used kernel density estimation with Silverman’s heuristics (Silverman, 1986). Any
other unconditional density estimator, such as plug-in approaches (Wand and Jones, 1994) can also be
used. The conditional density plots in Figure 1 were obtained by applying the above mentioned approach
to piecewise-linear CDFs in Figure 3.

4In all the experiments performed, we used only Gaussian kernel. Thus, we never encountered degenerate cases in this
paper.
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Figure 3: Estimated piecewise-linear cumulative distribution function in BMD example

4.2 Uniform bound of KQR-path estimate

We prove uniform convergence property of KQR-path estimator. Based on ψτ we define the expected
quantile risk as

Rτ [f ] := E[ψτ (Y − f(X))],

where f ∈ F is represented as f = g+β with g ∈ H and β ∈ R, where H is the reproducing kernel Hilbert
space with the kernel function K. In estimation of KQR-path, we resort to minimize the empirical risk
plus a regularizer. That is, the estimator is a minimizer of the empirical average of the loss function,

φ(z; f, τ) = ψτ (y − f(x)) +
λn

2
‖f‖2H,

where z = (x, y) ∈ X × R and ‖ · ‖H is the norm on H. The regularization parameter λn depending on
sample size n goes to zero monotonically as n goes to infinity. Let Rτ,reg[f ] = E[φ(Z; f, τ)], and R̂τ,reg[f ]
be the empirical counterpart. We define G as a class of functions mapping from X × R to R satisfying

G ⊂ {φ(· ; f, τ) : X × R→ R | f = g + β, g ∈ H, β ∈ R, τ ∈ [0, 1]} .
We suppose that φ(· ; f, τ) ∈ G for any τ ∈ [0, 1] if there exists τ ′ ∈ [0, 1] such as φ(· ; f, τ ′) ∈ G. For given
τ , let fτ be a minimizer of Rτ [f ] subject to φ(· ; f, τ) ∈ G, and f̂τ be the estimator minimizing R̂τ,reg[f ]
subject to the same constraint. We evaluate the probability of the event,

sup
τ∈[0,1]

Rτ [f̂τ ]−Rτ [fτ ] > ε,

in the infinite sample limit.
We denote the covering number of G as N∞(ε,G, n). Roughly speaking, N∞(ε,G, n) is the minimal

number to cover the set G by spheres with radius ε, when the distance between two functions are measured
only on n sample points. The subscript of N∞ denotes that ∞-norm is applied. See Zhang’s papers
(Zhang, 2004, 2002) for the detailed definition of the covering number and its upper bound. The rate of
uniform convergence of the function class G is given by the following theorem.
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Theorem 2 (Pollard (1984)). Suppose all functions in G are uniformly bounded such as |φ| < L. For
any ε > 0 and any n such as n > 8L2/ε2, the inequality

P

{
sup
φ∈G

∣∣∣∣∣
1
n

n∑

i=1

φ(Zi)− E[φ(Z)]

∣∣∣∣∣ > ε

}
≤ 8N∞(ε,G, n) exp

{
− nε2

128L2

}

holds.

We apply Pollard’s uniform convergence theorem to investigate the statistical property of KQR-path
estimate.

Theorem 3. Suppose that supx∈X K(x, x) <∞, and that for any function f = g+β ∈ F for g ∈ H and
β ∈ R satisfying φ(·; f, τ) ∈ G, the inequalities ‖g‖H ≤ Ā := max {A, A/ supx∈X K(x, x)} and |β| ≤ B
hold. The random variable Y is assumed to be bounded such as |Y | < M in probability one. Let L be a
constant such that |φ| < L holds for any φ ∈ G. Note that L is represented by Ā, B,M, and λ1. Then,
for any ε > 0 and any n such as max

{
λnĀ

2, 27/2L√
n

}
< ε, we have

P
{

sup
τ∈[0,1]

(Rτ [f̂τ ]−Rτ [fτ ]) > ε
} ≤ 8N∞(ε/25,G, n) exp

{
− nε2

211L2

}
. (14)

The proof is given in A.4. Zhang (Zhang, 2004, 2002) has given an upper bound of the covering number
N∞(ε,G, n). Applying Zhang’s results, we find that the probability (14) goes to zero as n goes to infinity.

5 Numerical Experiments

To investigate and illustrate the conditional density estimation using kernel quantile regression path
(KQR-path) method, we performed numerical experiments.

Various performance measures have been studied for density estimation. Most common one in the
literature of (unconditional) density estimation is mean integrated square error. For a certain input
x0 ∈ X , if g∗ and ĝ are true and estimated conditional probability for given x0, respectively, mean
integrated square error is defined as

MISEy|x0(ĝ|x0) = Edata{
∫

(ĝ(y|x0)− g∗(y|x0))2dy},

where Edata{· · · } denotes the expectation under the sample distribution.
In our KQR-path algorithm we minimize

∫ 1

0

∑n
i=1 ψτ{yi−fτ (xi)}dτ . Let Ĝ(y|x0) =

∫ y

−∞ ĝ(z|x0)dz be
the cumulative distribution function (CDF) of ĝ. Since it has been shown in quantile regression literature
that minimizing quantile loss function ψ is a promising approach for conditional quantile estimation,

Edata{
∫ 1

0

EY |x0ψτ (Y − Ĝ−1(τ |x0))dτ}, (15)

may be one way to measure conditional density estimation performance.
We compare our KQR-path with mixture density network (MDN) (Bishop, 1994). In MDN a set

of parameters for normal mixture densities are estimated by minimizing the negative log likelihood
−∑n

i=1 log ĝ(yi|xi). It suggests us

Edata{−
∫

log ĝ(y|x0)dy} (16)

may be another possible measure for conditional density estimation.
Unfortunately, neither (15) nor (16) is appropriate measure for nonparametric density estimation.

The former (15) may be a sensible measure for conditional CDFs or quantile functions (QFs), but not for
densities because densities can have totally different shapes even for similar CDFs or QFs. Negative log
likelihood in (16) is known to be non-robust measure for nonparametric density estimation (e.g. Schuster
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and Gregory, 1981; Silverman, 1986; Wand and Jones, 1994). For example, if it happens that ĝ(y|x0) = 0
for any y, (16) will be +∞. Another notorious example of using likelihood for density estimation is actually
found in mixture density estimation. In mixture density estimation with more than two components, (16)
will attain minimum (−∞) if one of the components represents a spike density of infinite height at any
one data point.

In 5.1 we provide quantitative evidences on the performance of our KQR-path conditional density
estimator by comparing the MISEs with those of MDN for artificially generated data sets. In 5.2 we
apply our conditional density estimator to real-world data sets and present qualitative discussions. For
artificial data experiments we use MISE to quantify the conditional density estimation performances.
For real data experiments we cannot evaluate MISE because MISE has unknown true density g∗ in
its definition. Note that there are no general way to estimate MISE from data. We cannot even use
resampling techniques such as cross-validation because we need to know the density of y (not the y
itself) in validation set in order to evaluate finite-sample analogue of MISE for validation set5. For the
model selection (selection of hyper-parameters) of KQR-path and MDN we used cross-validation using
finite-sample analogues of (15) and (16) as loss measure, respectively.

5.1 Artificial data

We generated some artificial data sets and compare the MISEs of KQR-path with those of MDN.

5.1.1 Data Sets

We considered only univariate input problems in order to visualize estimated conditional densities. Data
set {(xi, yi)}n

i=1 were generated as follows. The input {xi}n
i=1 were uniformly drawn from [−1, 1]. The

output {yi}n
i=1 were computed as

yi = µ(xi) + σ(xi) · εi, i = 1, ..., n, {εi}n
i=1 i.i.d..

We considered two different sample sizes: n = 100 or 200. The location function µ was set to be
µ(x) = sinc(2πx) for all through the experiments in 5.1, where sinc(z) = (sin z)/z if z 6= 0 and 1
otherwise. We considered homoscedastic (homo) and heteroscedastic (hetero) scale functions for σ. We
used σ(x) = 0.25 for the former and σ(x) = 0.125 exp(1 − x) for the latter. To simulate a variety of
densities, we used 8 normal mixture densities introduced in Marron and Wand (1992)6:

D1 Gaussian: N(0, 1),

D2 Skewed unimodal: 1
5N(0, 1) + 1

5N( 1
2 , (

2
3 )2) + 3

5N( 13
15 , (

5
9 )2),

D3 Strongly skewed:
∑7

k=0
1
8N(3{( 2

3 )k − 1}, ( 2
3 )2k),

D4 Kurtotic unimodal: 2
3N(0, 1) + 1

3N(0, ( 1
10 )2),

D5 Outlier: 1
10N(0, 1) + 9

10N(0, ( 1
10 )2),

D6 Bimodal: 1
2N(−1, ( 2

3 )2) + 1
2N(1, ( 2

3 )2),

D7 Separated bimodal: 1
2N(− 3

2 , (
1
2 )2) + 1

2N( 3
2 , (

1
2 )2),

D8 Skewed bimodal: 3
4N(0, 1) + 1

4N( 3
2 , (

1
3 )2).

Thus, in total, we performed experiments in (2 sample sizes) × (2 scale functions) × (8 densities) = 32
conditions. Figures 4 and 5 show examples of the simulated data sets.

5In the literature of (unconditional) density estimation, considerable efforts have been devoted to compute approximate
or asymptotic MISE for several density estimators. Computing asymptotic MISE of our KQR-path conditional density
estimator is an important future works but lies outside the scope of this paper.

6We used the first 8 of the 15 normal mixture densities in Marron and Wand (1992).
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5.1.2 Estimators

All through the experiments on KQR-path we used Gaussian kernel: k(xi,xj) = exp{−||xi−xj ||2/2γ2}.
Thus, it has two hyper-parameters: the regularization parameter λ and the standard deviation of
Gaussian kernel γ. We chose the pair of hyper-parameters from all possible 7 × 7 combinations of
λ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10} and γ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10} using 10-fold cross-validation. We used
finite-sample analogue of (15) as loss measure in the cross-validation. If {(xi, yi)}nvalid

i=1 is validation set,
the validation error is given by

∑nvalid
i=1

∫ 1

0
ψτ (yi−fτ (xi))dτ . Note that we can easily compute the integral

because both ψ and fτ are piecewise-linear functions.
We controlled the capacity of MDN by number of hidden units and weight decay penalty. Thus,

MDN also has a pair of hyper-parameters. Those pair of hyper-parameters were chosen from all possible
7×7 combinations of number of hidden units in {1, 2, 3, 4, 5, 7, 10} and weight decay penalty coefficient in
{0, 10−4, 10−3, 10−2, 10−1, 1, 10} using 10-fold cross-validation. Finite-sample analogue of (16) was used
as loss measure in the cross-validation. The validation error is given by −∑nvalid

i=1 log ĝ(yi|xi), where
ĝ is the estimated conditional density by trained MDN. As discussed before, with the use of negative
log-likelihood criterion, MDN tends to put spike densities at data points. One way to circumvent this
phenomenon is to introduce a constraint that the variances of mixture components to be larger than
a certain predefined value δ. All through the experiments on MDN in this paper, we employed this
approach (we set δ = 10−4 in normalized scale). MDN was trained using Fletcher-Reeves conjugate
gradient algorithm with Brent’s line-search method (Press et al., 1992).

One of the important issues in mixture density estimation is how to determine the number of compo-
nents. If one has some knowledge about the conditional densities, a simple way is to plot the densities
with several number of components and choose the one that is most in accordance with one’s prior ideas.
This kind of subjective choice is not appropriate in exploratory nonparametric modeling framework, and
we need to develop a method for data-dependent automatic selection. In our artificial data experiments,
we examined three approaches. The first one is to use the truth. Since we generated data from normal
mixture densities, we know the true number of components.Needless to say, this approach is not appli-
cable to general situations, but it is informative to see the performances of MDN with optimal number
of components. We call MDN with this approach as MDN-OPT. The second approach is to use sufficiently
many components. Even when there are too many components, MDN has a potential to describe true
mixture densities by assigning zero mixing proportions for redundant components. In our experiments
we set the number of components to be 10 for this purpose. We call MDN with this second approach
as MDN-10. The third approach is to use cross-validation. Note that this approach is extremely time-
consuming because we now have three hyper-parameters for MDN. In our experiments we selected the
number of components from {1, 2, ..., 10}. Thus, for each data set, (10 validation sets) × (7 candidates
for number of hidden units) × (7 candidates for weight decay penalty coefficient) × (10 candidates for
number of components) = 4,900 MDNs had to be trained. We call this time-consuming approach as
MDN-CV.

5.1.3 Results

In each experimental condition we generated 10 data sets. The MISEs of KQR-path and each of three
different MDNs, MDN-OPT, MDN-10 and MDN-CV, were computed for each of 10 data sets. For numerical
reasons, we approximated MISEs by mean square error at 50× 500 meshed grid points in 2-dimensional
input-output space [−1, 1] × [−3, 3]. In each experimental condition MISEs of each 10 data sets were
compared and the significance was evaluated using paired-sample t-test. Table 1 summarizes the results.
The ◦ (•) indicates the MISEs of KQR-path were smaller (larger) than those of MDN in average. Fur-
thermore, ◦◦, ◦◦◦ and ◦◦◦◦ (••, ••• and ••••) indicate that the difference was significant at p = 0.1,
0.05 and 0.01, respectively.

The performances of KQR-path were comparable to those of MDN-OPT. Remember that the data sets
were generated from normal mixture models and the parametric models for conditional distributions used
in MDN-OPT were true ones. It indicates that our nonparametric conditional density estimator performed
equally well to the true parametric counterpart. KQR-path were always better than MDN-10 and the
differences were almost always significant. It suggests that MDN performance is sensitive to the number
of components. When the number of components were empirically estimated by cross-validation in
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Table 1: Summary of the simulation results.
KQR-path vs.
MDN-OPT

KQR-path vs.
MDN-10

KQR-path vs.
MDN-CV

homo hetero homo hetero homo hetero
D1 •••• •••• ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦
D2 ◦ ◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦ ◦◦◦◦
D3 ◦◦◦◦ ◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦

n = 100 D4 ◦◦◦ ◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦
D5 ◦◦◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦
D6 ◦ ••• ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦
D7 ◦ • ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦
D8 ◦ •••• ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦
D1 •••• •••• ◦◦◦ ◦◦◦ ◦ •
D2 • ◦ ◦◦◦◦ ◦◦◦◦ ◦ ◦
D3 ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦

n = 200 D4 ◦◦◦ ◦◦ ◦◦◦◦ ◦ ◦◦◦◦ ◦◦◦
D5 ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦
D6 • ••• ◦◦◦◦ ◦◦◦◦ ◦◦◦ •
D7 • ••• ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦
D8 •••• •••• ◦◦◦◦ ◦◦◦◦ ◦◦ ◦

MDN-CV, the performances were much improved. But KQR-path still worked better than MDN-CV in most
experimental conditions and the differences were significant in many cases. The details of the results are
given in appendix B. Figures 4 and 5 show examples of conditional density estimates by KQR-path.

5.2 Real data

Here we apply KQR-path and MDN to three real data sets. As discussed in the beginning of this section,
there are no practical ways to evaluate the performances of density estimation without knowing the true
density. The objective of this subsection is to illustrate the real-world applications and provide qualitative
discussions on the properties of our conditional density estimator.

5.2.1 Bone mineral density (BMD) data set

In section 1, we provided an example on bone mineral density (BMD) data to illustrate conditional
density estimation problems. We describe the detail here. The sample size is n = 485. We normalized
both of the input and the output variables so that they have zero mean and unit variance.

In KQR-path estimator, we used Gaussian kernel. The pair of hyper-parameters were selected using
10-fold cross-validation in the same way as simulation studies in 5.1, and λ = 0.1 and γ = 1.0 were
selected. The algorithm found L = 1349 event points. The average and maximum sizes of {I0

τ`
}L

`=1 were
5.59 and 9, respectively. Figure 6(a) shows the estimated conditional densities for x = 12, 18, and 24.

We also applied MDN to BMD data. The number of mixture components, number of hidden units,
and weight decay penalty parameter were determined by 10-fold cross-validation in the same way as
MDN-CV in 5.1. The selected number of components was 5, the number of hidden units was 4, and the
weight decay penalty parameter was 1.0. We trained several MDNs with different initial parameters
(weights), and slightly different but qualitatively similar results were obtained. Figure 6(b) shows an
example of the estimated conditional densities by MDN.
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As discussed above, it is difficult to assess the density estimation performances. At first sight, the
densities estimated by KQR-path seems to be slightly over-smoothed and those by MDN look under-
smoothed. For example, p̂(y|x = 12) by KQR-path clearly suggests bi-modality but the corresponding
density by MDN is unimodal. It is important to know that whether or not these two modes are really
present or are they just artifacts. An answer is available in the present example by separating the data
set according to sex. Figure 7 shows the estimated densities for each of the male and female samples.
In both of KQR-path (a) and MDN (b), estimated conditional densities of male and female sample for
x = 12 were unimodal and their modes seem to have correspondence with the two modes in Figure 6(a).
It indicates that the two modes suggested by KQR-path estimator are true important features of the
conditional density p(y|x = 12).

5.2.2 Geiser data set

Next, we applied KQR-path to Geiser data taken from Azzalini and Bowman (1990). This data is on the
waiting time between the starts of successive eruptions and the duration of the subsequent eruption for
the old faithful geyser in Yellowstone National Park. Figure 8 shows a scatter plot of the data. It is clear
that the duration of the next eruption is relatively long if the waiting time was shorter than about 70
minutes. But, when the waiting time is longer than about 70 minutes, the duration of the next eruption
seems to be a mixture of short and long durations. The sample size is n = 299. We normalized the input
and the output variables so that they have zero mean and unit variance.

In KQR-path, we used Gaussian kernel. The pair of hyper-parameters were selected using 10-fold
cross-validation in the same way as simulation studies in 5.1, and λ = 0.2 and γ = 0.2 were selected.
The algorithm found L = 788 event points. The average and maximum sizes of {I0

τ`
}L

`=1 were 24.99 and
34, respectively. Figure 8(a) shows the estimated conditional densities of the output y given the input
x = 50, 65, and 80.

In MDN, the number of components, number of hidden units, and weight decay penalty parameter
were determined by 10-fold cross-validation in the same way as MDN-CV in 5.1. The selected number of
components was 5, the number of hidden units was 5, and the weight decay penalty parameter was 1.0. We
trained several MDNs with different initial parameters (weights), and slightly different but qualitatively
similar results were obtained. Figure 8(b) shows an example of the estimated conditional densities by
MDN.

We analyzed this data to examine how KQR-path and MDN perform when conditional density sharply
changes from unimodal to bimodal. KQR-path estimated unimodal densities when x = 50 and 65
(ignoring minor zig-zags), and bimodal density when x = 80. MDN also successfully estimated bimodal
density when x = 80 (ignoring spike density region at y = 4, which will be discussed later). But it falsely
generated small modes around y = 2 also when x = 50 and 65. Spike densities at y = 4 in MDN estimates
are not necessarily artifacts. When data was collected in Azzalini and Bowman (1990), some duration
times were recorded as L(long), S(short) and M(medium) and later 4, 2, and 3 were numerically assigned,
respectively. Thus, there are many points with y = 4 and we can interpret that MDN successfully found
true high density region.

5.2.3 Boston housing data set

So far, we studied univariate input data set. Our conditional density estimator can be straightforwardly
applied to high-dimensional input data set. To illustrate this, we apply KQR-path and MDN to well-
known Boston housing data set. The sample size is n = 506 and the input dimension is 13. We normalized
all the input and output variables so that they have zero mean and unit variance.

In KQR-path, we used Gaussian kernel. The pair of hyper-parameters were selected using 10-fold
cross-validation in the same way as simulation studies in 5.1, and λ = 0.2 and γ = 5.0 were selected. The
algorithm found L = 1210 event points. The average and maximum sizes of {I0

τ`
}L

`=1 were 41.78 and 58,
respectively. Figure 9(a) shows the estimated conditional densities of the output y given the three input
vectors xi(0.25) , xi(0.50) and xi(0.75) , where i(0.25), i(0.50) and i(0.75) are the indices of training data set such
that their corresponding outputs yi(0.25) , yi(0.50) and yi(0.75) are 25, 50 and 75 percentiles of {y1, ..., yn}.
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In MDN, the number of components, number of hidden units, and weight decay penalty parameter
were determined by 10-fold cross-validation in the same way as MDN-CV in 5.1. The selected number of
components was 2, the number of hidden units was 1, and the weight decay penalty parameter was 1.0. We
trained several MDNs with different initial parameters (weights), and slightly different but qualitatively
similar results were obtained. Figure 9(b) shows an example of the estimated conditional densities of the
output y given the three input vectors xi(0.25) , xi(0.50) and xi(0.75) .

6 Conclusions

We have presented an algorithm to obtain the entire solution path for kernel-based quantile regression
(KQR). The algorithm is based on the piecewise-linearity of the solution path. Unlike the previous
study (Hastie et al., 2004; Li et al., 2007) whose goal is to obtain solution path with respect to the
regularization parameter λ, our approach provides the KQR solution path with respect to the quantile
order τ ∈ (0, 1). It enables us to estimate the cumulative distribution function (CDF) of conditional
density in piecewise-linear form. After smoothing the CDF, we obtain nonparametric conditional density
estimate. Conditional density estimation is an effective tool for exploratory data analysis. It provides
deeper insight into the underlying mechanism of the data than conventional regression analysis does.

Relatively few studies have been reported on conditional density estimation for high-dimensional data.
Some conditional density estimators have been studied in the framework of nonparametric smoothing,
but they are applicable only to one or two-dimensional input data because of the curse of dimensionality.
In machine learning literature, several efforts have been devoted to estimate input-dependent parameters
of (parametric) conditional density as the outputs of multi-layer-perceptron (MLP). Among those ap-
proaches mixture density network (MDN) is especially useful. It describes conditional density by mixture
of parametric distributions and all the involving parameters are estimated as the outputs of MLP.

Our conditional density estimator based on KQR-path has several advantages. It inherits many
desirable properties of kernel-machines. The solution is (almost) unique and guaranteed to be globally
(not locally) optimal because it is formulated as convex optimization problem. It can be applied to
high-dimensional or structured input problems without much increasing computational complexity. In
addition, numerical experiments in section 5 demonstrate the relative efficiency of KQR-path estimator.
Total computational cost (including cross-validation for determining hyper-parameters) of KQR-path was
much smaller than that of MDN.

Although both KQR-path and MDN (and other similar approaches) have a common goal, the criterions
used for their model fittings are totally different. The former is trying to find the true CDF of conditional
density by minimizing the integrated quantile error (15). On the other hand, the latter is trying to
minimize the Kullback-Leibler distance between true and estimated conditional densities by minimizing
the negative-log likelihood (16). As discussed in section 5, neither is perfectly appropriate measure for
density estimation, and it is difficult to make clear-cut conclusion that one is better than the other.

Conditional density estimation has two different smoothing phases. The first phase is the smoothing
in x-direction. The smoothing here is used in the same sense as in nonparametric regression. The second
phase is the smoothing in y-direction, in which the smoothing is used as in the context of unconditional
density estimation. Actually, our main contribution in this paper is only in the former and one can use
any other unconditional density estimator for the latter. Our KQR path algorithm is considered as an
conditional CDF estimator with an ability to smooth in x-direction. This modularity is helpful because
we can control the degrees of smoothing independently in x and y-directions. On the other hand, MDN
or other similar approaches perform smoothing both in x and y-directions simultaneously. Thus, their
capacity control is more challenging and tends to have more hyper-parameters than our approach.

One of the limitations of KQR-path estimator is that it cannot be straightforwardly extended for
high-dimensional output problems. In other words, our approach can only be applied to univariate
conditional density and not to multivariate conditional density. Nonparametric multivariate density
estimation is challenging problem, but there are many important applications.

There remains to be several problems to improve the presented methodology. In terms of the al-
gorithm, as discussed in section 3, we need to develop a way to deal with some degenerate situations.
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Current piecewise-linear path-following algorithm in kernel machines including ours have a possibility to
fail (although rarely in practice) in certain degenerate situations. To assess the estimation performances,
it might be helpful if we could compute asymptotic mean integrated square error (MISE) of our estimator.
In addition, application to practical problems, especially to data sets with high-dimensional inputs, is an
important step for maturing our methodology.

A Proofs

A.1 Proof of Lemma 1

Proof. Let n+
τ and n−τ be the sizes of I+

τ and I−τ , respectively. If I0
τ is empty, the summation constraint

(6d) is represented as

n∑

i=1

ατi = τn+
τ + (τ − 1)n−τ = τn− n−τ = 0 ⇐⇒ τ =

n−τ
n
,

where n−τ ∈ {0, 1, 2, ...n}.

A.2 Proof of Lemma 2

Proof. We prove only the first part. For τ ∈ (τl∗−1, τl∗), I0
τ contains only one element, say ĩ. In this

interval, (10) is represented as



0 1

1 Kĩ̃i






ατ0 − ατl∗−10

ατ ĩ − ατl∗−1 ĩ


 =




1− n

−∑
i 6=ĩKĩi


 (τ − τl∗−1).

Solving this 2-by-2 linear system of equations,

ατ ĩ = ατl∗−1 ĩ + (1− n)(τ − τl∗−1).

It shows that ατ ĩ is linearly decreasing function of τ in the interval (τl∗−1, τl∗) because the sample size

n > 1. Remembering that ĩ moves into I−τ∗ if ατ∗ ĩ = 1 − τ∗ and moves into I+
τ∗ if ατ∗ ĩ = τ∗, ĩ must

move to I−τ∗ , not to I+
τ∗ , at l∗-th event. Suppose that ĩ is any element in I−τ∗ other than i−max. Then the

residual of i−max is

yi−max
− 1
λ
{

n∑

j=1

ατ∗jKi−maxj} > yĩ −
1
λ
{

n∑

j=1

ατ∗jKĩj} = 0.

Since this contradicts the fact that i−max ∈ I−τ∗ , we conclude that ĩ = i−max. This proves the first part of

lemma 2. The second part can be proved similarly.
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A.3 Proof of Theorem 1

Proof. From section 3, τ -th conditional quantile model fτ is represented as

fτ (x0) =
1
λ
{

n∑

i=1

ατiK(x0,xi) + ατ0}

=
1
λ
{

n∑

i=1

[ατ`i + c`i(τ − τ`)]K(x0,xi) + [ατ`0 + c`0(τ − τ`)]}

=
1
λ
{

n∑

i=1

[
τ`+1 − τ

τ`+1 − τ`
ατ`i +

τ − τ`
τ`+1 − τ`

ατ`+1i]K(x0,xi)

+ [
τ`+1 − τ

τ`+1 − τ`
ατ`0 +

τ − τ`
τ`+1 − τ`

ατ`+10]}

=
τ`+1 − τ

τ`+1 − τ`
· 1
λ
{

n∑

i=1

ατ`iK(x0,xi) + ατ`0}

+
τ − τ`
τ`+1 − τ`

· 1
λ
{

n∑

i=1

ατ`+1iK(x0,xi) + ατ`+10}

=
τ`+1 − τ

τ`+1 − τ`
· fτ`

(x0) +
τ − τ`
τ`+1 − τ`

· fτ`+1(x0),

where we used c`i = (ατ`+1i − ατ`i)/(τ`+1 − τ`) in the third equality. It tells that the τ -the quantile

of p(y|x = x0) is represented as linear interpolation of τ`-th and τ`+1-th quantiles of p(y|x = x0) with

an ratio τ`+1−τ
τ`+1−τ`

: τ−τ`

τ`+1−τ`
. Noting that CDF is just the inverse of the quantile function, the proof is

completed.

A.4 Proof of Theorem 3

Proof. We use standard bounding trick that

sup
τ

(Rτ [f̂τ ]−Rτ [fτ ]) ≤ sup
τ

(Rτ,reg[f̂τ ]−Rτ,reg[fτ ]) +
λnĀ

2

2

≤ 2 sup
τ,f

(R̂τ,reg[f ]−Rτ,reg[f ]) +
ε

2
.

Applying Theorem 2, we complete the proof.

B Detailed Results on Simulation Study

Tables 2, 3 and 4 show the detailed results on the simulation study in 5.1. In these tables, the figures
indicate the average and standard error of the mean integrated squared errors (MISE) for 10 data sets.
We assessed the significances of the results using paired-sample t-test (t) and Wicoxon signed-rank test
(signrank).
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Table 2: Detailed simulation results (KQR-path vs. MDN-OPT)

homo (n = 100)
MISE Significance (p-value)

KQR-path MDN-OPT t signrank

D1 0.0385 ± 0.0039 0.0176 ± 0.0037 0.0003 0.0039
D2 0.0545 ± 0.0085 0.0733 ± 0.0108 0.1478 0.1934
D3 0.1460 ± 0.0034 0.2581 ± 0.0140 0.0000 0.0020
D4 0.1566 ± 0.0108 0.2094 ± 0.0171 0.0257 0.0371
D5 0.4994 ± 0.0671 1.0334 ± 0.0849 0.0002 0.0020
D6 0.0342 ± 0.0029 0.0375 ± 0.0048 0.5410 0.6250
D7 0.0492 ± 0.0052 0.0595 ± 0.0107 0.3796 0.9219
D8 0.0404 ± 0.0034 0.0525 ± 0.0087 0.1865 0.1602

hetero (n = 100)
MISE Significance (p-value)

KQR-path MDN-OPT t signrank

D1 0.0357 ± 0.0046 0.0154 ± 0.0039 0.0005 0.0020
D2 0.0546 ± 0.0083 0.0579 ± 0.0083 0.7170 0.6953
D3 0.1393 ± 0.0077 0.2922 ± 0.0608 0.0211 0.0020
D4 0.1445 ± 0.0110 0.1682 ± 0.0068 0.1304 0.1055
D5 0.4926 ± 0.0588 0.7201 ± 0.0829 0.0514 0.0273
D6 0.0379 ± 0.0034 0.0297 ± 0.0030 0.0492 0.0840
D7 0.0509 ± 0.0060 0.0397 ± 0.0048 0.1418 0.1309
D8 0.0385 ± 0.0037 0.0253 ± 0.0016 0.0071 0.0020

homo (n = 200)
MISE Significance (p-value)

KQR-path MDN-OPT t signrank

D1 0.0309 ± 0.0035 0.0114 ± 0.0020 0.0007 0.0020
D2 0.0428 ± 0.0049 0.0329 ± 0.0045 0.1251 0.1602
D3 0.1284 ± 0.0066 0.1830 ± 0.0086 0.0024 0.0039
D4 0.1383 ± 0.0108 0.1673 ± 0.0066 0.0122 0.0371
D5 0.4403 ± 0.0546 0.8649 ± 0.0844 0.0025 0.0059
D6 0.0251 ± 0.0022 0.0219 ± 0.0010 0.2298 0.3223
D7 0.0338 ± 0.0026 0.0294 ± 0.0025 0.1654 0.2324
D8 0.0277 ± 0.0012 0.0245 ± 0.0012 0.0075 0.0137

hetero (n = 200)
MISE Significance (p-value)

KQR-path MDN-OPT t signrank

D1 0.0320 ± 0.0043 0.0129 ± 0.0043 0.0068 0.0039
D2 0.0459 ± 0.0057 0.0486 ± 0.0079 0.7582 0.8457
D3 0.1250 ± 0.0092 0.1729 ± 0.0141 0.0078 0.0020
D4 0.1375 ± 0.0105 0.1511 ± 0.0073 0.0844 0.1309
D5 0.4341 ± 0.0602 0.7727 ± 0.0703 0.0019 0.0020
D6 0.0286 ± 0.0031 0.0201 ± 0.0010 0.0262 0.0371
D7 0.0375 ± 0.0038 0.0247 ± 0.0025 0.0124 0.0137
D8 0.0295 ± 0.0026 0.0222 ± 0.0024 0.0047 0.0039
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Table 3: Detailed simulation results (KQR-path vs. MDN-10)

homo (n = 100)
MISE Significance (p-value)

KQR-path MDN-10 t signrank

D1 0.0385 ± 0.0039 0.1821 ± 0.0325 0.0023 0.0020
D2 0.0545 ± 0.0085 0.1825 ± 0.0271 0.0019 0.0020
D3 0.1460 ± 0.0034 0.2832 ± 0.0202 0.0002 0.0020
D4 0.1566 ± 0.0108 0.2448 ± 0.0187 0.0010 0.0039
D5 0.4994 ± 0.0671 0.9187 ± 0.0946 0.0017 0.0020
D6 0.0342 ± 0.0029 0.1305 ± 0.0200 0.0012 0.0020
D7 0.0492 ± 0.0052 0.1500 ± 0.0225 0.0008 0.0020
D8 0.0404 ± 0.0034 0.1584 ± 0.0289 0.0029 0.0039

hetero (n = 100)
MISE Significance (p-value)

KQR-path MDN-10 t signrank

D1 0.0357 ± 0.0046 0.1441 ± 0.0192 0.0003 0.0020
D2 0.0546 ± 0.0083 0.1905 ± 0.0236 0.0002 0.0020
D3 0.1393 ± 0.0077 0.3087 ± 0.0351 0.0009 0.0020
D4 0.1445 ± 0.0110 0.3247 ± 0.0421 0.0025 0.0020
D5 0.4926 ± 0.0588 0.8179 ± 0.0961 0.0100 0.0137
D6 0.0379 ± 0.0034 0.1111 ± 0.0194 0.0055 0.0020
D7 0.0509 ± 0.0060 0.1722 ± 0.0306 0.0036 0.0020
D8 0.0385 ± 0.0037 0.1445 ± 0.0224 0.0017 0.0020

homo (n = 200)
MISE Significance (p-value)

KQR-path MDN-10 t signrank

D1 0.0309 ± 0.0035 0.0626 ± 0.0077 0.0100 0.0195
D2 0.0428 ± 0.0049 0.0821 ± 0.0083 0.0047 0.0039
D3 0.1284 ± 0.0066 0.1906 ± 0.0100 0.0000 0.0020
D4 0.1383 ± 0.0108 0.1901 ± 0.0070 0.0000 0.0020
D5 0.4403 ± 0.0546 0.6375 ± 0.1023 0.0948 0.1309
D6 0.0251 ± 0.0022 0.0759 ± 0.0096 0.0003 0.0020
D7 0.0338 ± 0.0026 0.0795 ± 0.0091 0.0007 0.0020
D8 0.0277 ± 0.0012 0.0853 ± 0.0099 0.0003 0.0020

hetero (n = 200)
MISE Significance (p-value)

KQR-path MDN-10 t signrank

D1 0.0320 ± 0.0043 0.0483 ± 0.0060 0.1069 0.1602
D2 0.0459 ± 0.0057 0.0774 ± 0.0078 0.0380 0.0488
D3 0.1250 ± 0.0092 0.1634 ± 0.0103 0.0039 0.0059
D4 0.1375 ± 0.0105 0.1926 ± 0.0105 0.0003 0.0039
D5 0.4341 ± 0.0602 0.6010 ± 0.0504 0.0665 0.0840
D6 0.0286 ± 0.0031 0.0444 ± 0.0057 0.0216 0.0273
D7 0.0375 ± 0.0038 0.0740 ± 0.0097 0.0145 0.0273
D8 0.0295 ± 0.0026 0.0642 ± 0.0084 0.0038 0.0020
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Table 4: Detailed simulation results (KQR-path vs. MDN-CV)

homo (n = 100)
MISE Significance (p-value)

KQR-path MDN-CV t signrank

D1 0.0385 ± 0.0039 0.1005 ± 0.0182 0.0031 0.0039
D2 0.0545 ± 0.0085 0.0899 ± 0.0135 0.0328 0.0371
D3 0.1460 ± 0.0034 0.2377 ± 0.0193 0.0008 0.0020
D4 0.1566 ± 0.0108 0.2485 ± 0.0160 0.0001 0.0020
D5 0.4994 ± 0.0671 0.8535 ± 0.0578 0.0015 0.0059
D6 0.0342 ± 0.0029 0.1048 ± 0.0165 0.0022 0.0039
D7 0.0492 ± 0.0052 0.1197 ± 0.0172 0.0015 0.0020
D8 0.0404 ± 0.0034 0.1139 ± 0.0196 0.0057 0.0098

hetero (n = 100)
MISE Significance (p-value)

KQR-path MDN-CV t signrank

D1 0.0357 ± 0.0046 0.1781 ± 0.0560 0.0334 0.0098
D2 0.0546 ± 0.0083 0.1338 ± 0.0201 0.0082 0.0039
D3 0.1393 ± 0.0077 0.2107 ± 0.0197 0.0136 0.0039
D4 0.1445 ± 0.0110 0.2933 ± 0.0716 0.0832 0.0195
D5 0.4926 ± 0.0588 0.7522 ± 0.0701 0.0129 0.0195
D6 0.0379 ± 0.0034 0.1054 ± 0.0464 0.1919 0.0840
D7 0.0509 ± 0.0060 0.1372 ± 0.0257 0.0093 0.0137
D8 0.0385 ± 0.0037 0.0520 ± 0.0065 0.0713 0.0645

homo (n = 200)
MISE Significance (p-value)

KQR-path MDN-CV t signrank

D1 0.0309 ± 0.0035 0.0442 ± 0.0092 0.2139 0.2754
D2 0.0428 ± 0.0049 0.0650 ± 0.0129 0.1244 0.1934
D3 0.1284 ± 0.0066 0.1560 ± 0.0063 0.0011 0.0020
D4 0.1383 ± 0.0108 0.1808 ± 0.0105 0.0031 0.0059
D5 0.4403 ± 0.0546 0.7700 ± 0.0994 0.0081 0.0098
D6 0.0251 ± 0.0022 0.0459 ± 0.0070 0.0234 0.0273
D7 0.0338 ± 0.0026 0.0554 ± 0.0056 0.0056 0.0059
D8 0.0277 ± 0.0012 0.0587 ± 0.0140 0.0520 0.0195

hetero (n = 200)
MISE Significance (p-value)

KQR-path MDN-CV t signrank

D1 0.0320 ± 0.0043 0.0248 ± 0.0060 0.3435 0.2754
D2 0.0459 ± 0.0057 0.0668 ± 0.0173 0.1628 0.3223
D3 0.1250 ± 0.0092 0.1542 ± 0.0097 0.0041 0.0098
D4 0.1375 ± 0.0105 0.1710 ± 0.0083 0.0162 0.0137
D5 0.4341 ± 0.0602 0.6397 ± 0.0589 0.0655 0.1934
D6 0.0286 ± 0.0031 0.0280 ± 0.0042 0.9010 0.4922
D7 0.0375 ± 0.0038 0.0746 ± 0.0259 0.1738 0.1055
D8 0.0295 ± 0.0026 0.0415 ± 0.0109 0.3329 0.3750
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Figure 4: Conditional density estimates by KQR-path in homoscedatic simulated data sets.
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Figure 5: Conditional density estimates by KQR-path in heteroscedatic simulated data sets.
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Figure 6: Conditional density estimates in BMD data set.
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Figure 7: Conditional density estimates of male and female samples in BMD data set.

25



 0

 1

 2

 3

 4

 5

 6

 40  50  60  70  80  90  100

D
u

ra
ti

o
n

 T
im

e
 [

m
in

u
te

s]

Waiting Time [minutes]

 0

 1

 2

 3

 4

 5

 6

 40  50  60  70  80  90  100

D
u

ra
ti

o
n

 T
im

e
 [

m
in

u
te

s]

Waiting Time [minutes]

Figure 8: Conditional density estimates in Geiser data set.
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Figure 9: Conditional density estimates in Boston housing data set.
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