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Abstract

A fundamental research is carried out into convergence and stability properties of
IMEX (implicit-explicit) Runge-Kutta schemes applied to reaction-diffusion equa-
tions. It is shown that a fully discrete scheme converges if it satisfies certain con-
ditions using a technique of the B-convergence analysis, developed by Burrage,
Hundsdorfer & Verwer in 1986. Stability of the schemes is also examined on the
basis of a scalar test equation, proposed by Frank, Hundsdorfer & Verwer in 1997.
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1 Introduction

We consider initial-boundary value problems of the form

0
8—";:Lu+g(t,x,u), 0<t<T, €,
Syu(t,z) = p(t,z), 0<t<T, x €09, (L.1)

u(0,z) = uo(z), = € Q.

Here, u = u(t, z) is an R™-valued unknown function, Q2 is a bounded domain
in R, R?, or R® with the boundary 092, L is a linear partial differential operator
with respect to z, and ¢ is a function from [0,7] x Q x R™ to R™. Also, ®, is
a boundary operator, and ¢(t, ), uo(z) are given functions. Many important
reaction-diffusion equations (see, e.g., [11]) are represented in this form with

L= dlag(DlA, DQA, ceey DmA), (12)
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where A is the Laplace operator and D; are nonnegative constants.

A well-known approach in the numerical solution of evolutionary problems
in partial differential equations (PDEs) is the method of lines (MOL). In this
approach a PDE is first discretized in space by finite difference or finite element
techniques to be converted into a system of ordinary differential equations
(ODEs). Let Qp, C Q be a grid with mesh width i > 0, and let V', denote the
vector space of all functions from €, to R™. An MOL approximation of (1.1)
is written in the form

— = Lhu -+ (Ph(t) -+ gh(t, u) (13)

Here, u = uy, is an approximate function of w such that u(t) € V7, for t € [0, 77,
Ly, is a difference approximation of L, gy is a function from [0, 7] X V', to V',
defined by gn(t,v)(x) = g(t,z,v(z)), € Qp, for t € [0,T] and v € V,, and
©n(t) is a function determined from the boundary condition.

Ordinarily, Lyu on the right hand side of (1.3) gives a stiff term. If the g;-term
is non-stiff or mildly stiff, an IMEX (implicit-explicit) Runge-Kutta scheme
(see, e.g., [7], Chapt. IV, Sect. 4) is a proper choice for solving the equation
(1.3). Let us consider a pair of two Runge-Kutta methods defined by the arrays

0(0 O e 0 0/0 O - 0

Colasg age 0 -+ 0 colGay 0O - 0
C3|G31 Q32 Q33 : ’ 0'3 afﬂ dzz 0 : | (1.4)

0 o L0

Cs|Qst s =+ Gss—1 Qgs  Cs|Ust Us2 *** Uss—1 0

by by -+ by by by by -+ ey by

with the same abscissae

7 i—1
C; = Zazj = Zam y 1= 1, .eey S (15)
7j=1 7j=1

For simplicity, we assume that 0 < ¢; < 1. The left formula determines a
diagonally implicit (semi-implicit) Runge-Kutta method, the right formula an
explicit Runge-Kutta method. In addition, let At > 0 be a step size and
define the step point ¢, = nAt for integer n. By applying the left formula to
the linear part of (1.3) and the right formula to the nonlinear part, we obtain



the following scheme for the problem (1.1):

i—1
Unz _un+AtZa’Z]<LhU n,j +<Ph( n,j ) + Atzamgh< :j’Un:j)’
Jj=1 j=1
1=1,...,8, (1.6)

Up+1 —un+Ath (LhUnz+€0h( n,t ) + Ath gh( n'LaUnz)

=1 =1

Here, u, is an approximate value of u(t,), t,; := t,+c;At, and U, ; are interme-
diate variables, which are successively computed by solving linear equations.
The initial value ug is given by ug(z) = uo(z), T € Q4.

The IMEX Euler scheme (see, e.g., [6]) is the simplest example, which is a
combination of the implicit and explicit Euler methods

000 0/00
1101, 1]10 . (1.7)
b1 ‘10

In this case, the scheme (1.6) is reduced to

Upy1 = Uy + At(Lhun+1 + @h(tnﬂ)) + Atgp(tn, un). (1.8)

Several authors [1,3,8,13] have already studied properties of IMEX Runge-
Kutta schemes for PDEs. But, they mainly consider advection-diffusion equa-
tions or more general PDEs. Fundamental properties for reaction-diffusion
equations, which seem easier to treat, are not clarified. In this paper, we study
convergence and stability properties of IMEX Runge-Kutta schemes focusing
on their application to reaction-diffusion problems.

The paper is organized as follows. In the next section (Sect. 2) we prove a
theorem which guarantees convergence of fully discrete IMEX Runge-Kutta
schemes using a technique of the B-convergence analysis. The result is con-
firmed by a numerical experiment in Sect. 3. Another numerical experiment
concerned with stability of the schemes is also presented in the same section;
in particular, an instability phenomenon for an IMEX scheme is presented.
The phenomenon is analyzed in Sect. 4. We examine stability of IMEX Runge-
Kutta schemes using a scalar test equation, and show that some IMEX schemes
possess a good stability property for reaction-diffusion equations.



2 Convergence of fully discrete schemes

We assume the following conditions for the problem (1.1) and the MOL ap-
proximation (1.3):

The exact solution w(t, ) is of class C® with respect to t; g(t,z,u) is of
class C? with respect to ¢,u and (each component of) the derivative dg/0u
is bounded for (¢,z,u) € [0,T] x  x R™. Let (-,-) = (-,+), denote an inner
product on V', and let || - ||=| - ||» be the corresponding norm. We assume
that Ly, is dissipative with respect to (-,-), i.e.,

(Lpv,v) <0 forany v € V. (2.1)
In the case Ly is symmetric with respect to (-, -), i.e., (Lpv,w) = (v, Lyw) for

v, w € V', the condition (2.1) means that L, is negative semidefinite; many
difference approximations of the Laplace operator have this property.

As for the IMEX method (1.4), we consider the usual order conditions

Sbi=1, Y bhi=1, (2.2)
=1 =1

Yobici=1/2, Y bic; =1/2, (2.3)
i=1 =1

and the following extra conditions. We use the standard symbols 1 = [1, ..., 1]7
and C = {z € C:Rez < 0}.

(A) The diagonally implicit Runge-Kutta method is A-stable, ASI-stable,
and AS-stable, i.e., the stability function r(z) = 1+2bT (I, —zA) 1 satisfies

[r(2)] <1 forany z€C,
and all the components of (I, — zA)™! and 2b (I, — zA)~! are bounded on
Cc .
(B) The rational functions

VO (I, — zA)~L¢ V(I — zA) L€

?9) =, Y T A 24

are bounded on C™, where
€ = [0’£2"”’£S]T’ g = [0’€2a"'afs]Ta
% % i—1
fz' = CZ2/2 — Z aijcj, fz = Z aijcj — Z aijCj.
7j=1 7j=1 7j=1



We also define the spatial truncation error «y(t) by

on(t) = () — Laun(t) — ea(t) — gn (t, un(?)), (2.5)

where u,(t) is a V-valued function obtained by restricting the variable x of
the exact solution u onto €2,. For simplicity, we consider step sizes of the form
At = T/N with positive integer N. Then, we have the following theorem.

Theorem 2.1 If the coefficients (1.4) satisfy (2.2) and (A), then there are
positive constants 11, C1 such that

Jmax = wun(ta) || < Co(At+ mass | an(t) ) (26)

holds for any At < 7. If, in addition, (1.4) satisfy (2.8) and (B), then there
are positive constants o, Cy such that

2
(max || = un(t) || < Cy(At + max | () 1) (2.7)

holds for any At < 5.

The second order convergence is, in a sense, optimal. It is known that Runge-
Kutta approximations for PDEs suffer from order reduction phenomena. The
order of time-stepping in the fully discrete scheme is, in general, less than that
of the underlying Runge-Kutta scheme. In particular, the order of a diagonally
implicit Runge-Kutta scheme for PDEs does not exceed two [15] (see also [9,14]
on order reduction phenomena of Runge-Kutta schemes in the PDE context).
This property is inherited by IMEX Runge-Kutta schemes.

The proof of the theorem is carried out by the same argument as in the proof
of Theorem 3.3 of Burrage, Hundsdorfer & Verwer [2]. The following lemma
(see, e.g., [5], IV.11) is the basis of the proof.

Lemma 2.2 (Theorem of von Neumann) Let ¢(z) be a rational function
which has no pole in C. Then, under the condition (2.1), we have

| 6L < sup (o). 2.3

Proof of Theorem 2.1. Replacing U, ;, u, and u,4+; in the scheme (1.6) with
up(tni), un(ts,) and wp(t,41), respectively, we obtain the recurrence relation

W (tns) = wn(tn) + At z aij (Lnun(tng) + on(tny))

i=1



i—1

+ At Z aij (73 (tn,j, Up (tn,j)) + Tnyi, (29)

=1

Up(tni1) = up(ty) + Atzs: bi (Lhuh(tn,i) + @h(tn,i))

=1

+ At Zgz 9h (tn,ia uh(tn,i)) +pn (2.10)

=1

with the residuals r,,; and p,. By (2.5) and (1.5), r,,; is expanded as

Tni = Wp(tni) — un(t,) — At Z Gij [u;l(tn,j) — 0n (tn,ja uh(tn,j)) - ah(tn,j)]

7j=1
i1
—At Z aij Gn (tn,ja uh(tn,j))
7j=1
= A& Ul () + A2E g8 (t) + ALY ayj an(tn ;) + O(AP). (2.11)
j=1

Here, gg) (tn) is an element of V', whose value for z € €2, is given by
Oou

gg)(tn) 99 (tn,x,u(tn,x)) + %(tn,x,u(tn,x)) 5

~ ot ou (tn, ),

and O(A#?) denotes a term whose component for each = € €2, is of O(A#?).

Subtracting (1.6) from (2.9) and (2.10), we have the recurrence relation

i i—1
6n,i =&, + At Z Q44 Lh 6n,j + At Z aij Jn,j 6n,j + Tn,
i=1 i=1 (2.12)

s s
Entl = En T At Z bz Lh 5n,z' + At Z bz Jn,i 5n,i + Pns
i=1 =1

for the errors

Oni = Un(tni) — Ung, €n=un(tn) — un,

’

where J, ; is a function from 2, to R™*™ whose value for z € Q, is

Joi(z) = / 29 (b, @, (1 = O)Upg(x) + Ou(tns, ) do,

and the multiplication J,, ; 6, ; is component-wise for z € )),. Putting



A=AQRI, A=A®I, b=bR1, b=0b1, I=1,1,
7 =At(I,® Ly), W= Atdiag(Jo1, -, Jos),

571 1 Tn,l

where I is the identity map on V', we can rewrite (2.12) in the form

(I—AZ—AW,)6, =1®¢, +1",
- (2.13)
Enp1 =En+ (6" Z +b W,)6, + pn.
We now assume (2.2) and (A). From (2.2) and (2.5) it follows that
pn = ALY b ap(tn;) + O(AL). (2.14)

=1

By the assumption that dg/0u is bounded, there is a constant 7, such that

| Jniv [ <y llv] forany v e V. (2.15)

Thus, by the same argument as in the proof of Lemma 3.5 in [2], we can show
that I — AZ — AW, is invertible if At is sufficiently small. Eliminating ¢,
from (2.13) we get

Ent1 = Rn€n+MnTn+pna (2-16)
where
R,=I1+b"Z+b W,)(I—-AZ—AW,) "1 1),

M,=b"Z+b W,)(I - AZ - AW,)"".

By the same argument as in the proof of Lemma 3.6 in [2], we can also show
that there are positive constants vy, v», 73 such that

I R || S14+mAL || Mura | <9230 [ 7 |l (2.17)

i=1

for At < 13. Hence, it follows from (2.14) and (2.16) that

lensa I < (L+m A | en || +Cy (A8 + At max | oa(t) ) (218



for some constant C5 and sufficiently small A¢. This implies that

Cg(e’le — 1) (
it

lenll <enT | eo || + At+ max || on(t) ) (2.19)

for 1 <n < N. Letting C; = C3(e™” — 1) /71, we have (2.6) since || &¢ ||= 0.

Furthermore, we assume (2.3) and (B), and put

T = G(ALLY) wll(tn) + G(ALL,) g5 (tn),
wy =€ @ U (tn) +E® g\ (tn) — 1® N,

By the condition (B) and Lemma 2.2, || 0, || and || wy, || are bounded. Noticing
that R, 1, = nn + M, (1® 1,), we can rewrite (2.16) as

é\n—|—1 =R, +M,7, + ﬁna (2-20)
where

Ep=en+ A, Fo=1n— ALEQU!(tn) — AP E® g\ (1),

~

Pn = Pn+ At? (nn—H - nn) + At M, wy,.

By (2.11), p, is represented as

T'n,1

Po=1 1 |, Tni=AtY ajjon(tey) + O(AL). (2.21)
j=1

T'n,s

Moreover, we have b Z(I — AZ)"'w, = 0 by the definitions of ¢ and ¢.
Hence, it follows from

(I-AZ—-AW,)"' = (I - AZ)™"
+(I — AZ)" VAW, (I — AZ — AW,)™

that

M,w, = b W,(I - AZ) "w,
LU Z 40 W) (I - AZ) AW, (I — AZ — AW,) w,.



It is verified that this value is of O(At) by the ASLstability and AS-stability
of the implicit scheme, which, together with the usual order condition (2.3)
and 7,41 — 0, = O(At), implies that

P =AY b ap(tn;) + O(A). (2.22)

i=1

Hence, from (2.20) we have

& ] < Ut A0 || & [+ Ca (A8 + At max [ an(®) ) (223)

for some constant Cy, which implies that

C4(€71T - 1)(

& [l < e A2 [ mo | +
§é!

2
A+ max || an(t) ) (2:24)

for 1 <n < N. Using || e, || <|| & || +A¢ || 7, || and rewriting the constants,
we finally obtain (2.7). O

3 Numerical examples

We present some numerical results for problems in one-dimensional PDEs in
the case = (0,1). To test the accuracy of IMEX Runge-Kutta schemes, we
adopt a model problem of the form

ou O*u

— = — <t<1 Q

5 8$2+g(t,x,u),0_t_ , x €Q,

w(t,0) = Bo(t), w(t,1) = Bi(t), 0 <t <1, (3.1)

u(0,2) = uo(z), z € Q,
where

g(t,z,u) = u — u® + 3% cos(t + z) + e sin®(t + z),
Bo(t) = e'sint, By(t) = e 'sin(t + 1), uo(x) = e “sina.

The exact solution is given by

u(t,xr) = e “sin(t + ).



Let M be a positive integer, h = 1/M, and let €2}, be a uniform grid with nodes
x; = jh, j =1,..., M —1. By replacing the second order spatial derivative with
the second order centered difference, we obtain an MOL approximation

du
% = Lpu + (ph(t) + gh(tv ’U,), (32)
where u(t) = [u'(t), ..., ™ ~1(t)]T, v/ (t) ~ u(t, z;), and
21 0 -0 | Bo(t)
1 -2 1 0 0
1 1
Ly=g30 1 =2--- 0 |, ¢ult) =13 (3.3)
0
0 0 1 -2 Bi(t)

One of the simplest IMEX Runge-Kutta schemes which satisfy all the condi-
tions of Theorem 2.1 is the IMEX trapezoidal scheme (see, e.g., [7], p.391)

0o o 00 0
11/21/2, 1|1 0
1/21/2 1/21/2

(3.4)

The usual order conditions (2.2) and (2.3) are clearly satisfied. It follows from

_142/2
C1—z/2

r(z) (I, —zA)™ ' = [

1 0 ]
2)2—2)2/2-2)]|
b (L —2A)7 = [2/(2 - 2),2/(2 - 2)]

that the (implicit) trapezoidal scheme satisfies (A). In addition, & = [0, 0]"
and & = [0,1/2]". Hence,

b (I, — zA) 1€
bT (I — zA) 11

(L —zA) o
6C) = oy iy =0 90 =

=1/4,

and the condition (B) is satisfied.

10



The IMEX scheme

00 0o o0 0| 0 0 0
v |0 v 0’ Y| Y 0 0’ 7:3+¢§’ (3.5)
1—~4[01-2y v 1—qly=12(1=7) 0 6
0 1/2 1/2 0 1/2 1/2

also satisfies the conditions. This pair, which was proposed by Ascher, Ruuth
and Spiteri [1], determines a method of order 3 for ODEs. In particular, (2.2)
and (2.3) are satisfied. The conditions (A) and (B) follow from

_1- (27— 1)z — (y — 1/3)2?

=) (1=z)? ’

1 0 0 |

0 ! 0
(Is —2A) ' = 1—~z 3

0— 2y-1z 1

L (=722 1—9z
mﬁg—¢Ar1=beL_®7_1V, L

2 (1—7v2)2 "1—7z

2

0% 2y —1)z ~ Y2 (2y — 1)z
o) = (T) g e G = O
2/)24+(1—4v)z 24 (1 —4v)z
We refer to the scheme (3.5) as the ARS3 scheme.
We apply these schemes to the MOL approximation (3.2), and integrate it from

t =0 tot =1, with various grid and step sizes of the form h = At = 1/M.
We measure the errors for each scheme by

€M = 1£a<XM ” Up — uh(tn) ”a (36)
where || - || denotes the discrete Ly norm, i.e., the induced norm from the

inner product

M-1
(u,v)y =h Y ujvj, u,verRM™
j=1

The results are summarized in Table 1. The second, fourth and sixth columns
give the values of €;; for each scheme. The third, fifth and seventh columns

11



display the order of accuracy for each scheme computed by logy(enr/2/€n).
Order 1 and order 2 are observed for the IMEX Euler scheme (1.7) and the
IMEX trapezoidal scheme (3.4), respectively. The observed order for the ARS3
scheme (3.5) is about 2.2.

Table 1
Accuracy test with the model problem (3.1) for the IMEX Runge-Kutta schemes.

IMEX Euler IMEX TR. ARS3

M | Lo-error order | Lo-error order | Lo-error order

10 | 1.4 1072 5.7 1073 2.6 1073

20 | 751073 090 | 1.4 1073 1.99 | 5.0 10~*  2.37
40 [39107% 0.95|3.6107* 2.00|1.0107* 231
80 [2.0107% 0.98 |9.0107° 2.00 [ 2.1107° 2.24
160 | 9.9107* 0.99 | 221075 2.00 | 471075  2.20
320 | 5.0107* 0.99 | 5.6 1076 2.00 | 1.0 1076  2.22
640 | 25107  1.00 | 1.4 107 2,00 | 2.1 1077 2.23

To examine stability of the schemes, we consider the reaction-diffusion equa-
tion
ou  Ju

a—@'{"g(l&), t>0, x €9, (37)

with g(u) = pu(1 —u?), under the homogeneous Dirichlet condition w(t,0) =
u(t,1) =0, t > 0, where p is a real parameter. Since the eigenvalues of the
operator d?/dz? in L*(2) with the homogeneous Dirichlet condition are

—k*r% k=1,2, ..,

if ;1 < 72, the trivial solution u = 0 is asymptotically stable (see, e.g., [12],
Sect. 5.2, Theorem 2.2). In the case u represents the concentration of a sub-
stance, this means that diffusion suppresses the growth of the substance if the
growth rate is relatively small. It seems as if this is easily mimicked using an
IMEX scheme.

We again adopt an MOL approximation

12



for the uniform grid Q, with h = 1/M, where u and Ly, are the same as before.
The eigenvalues of the matrix L;, are

krAz
2

4
)\k = _A—xQ SIIIQ(

), k=1,..,M—1.

If 4 < —\q, the trivial solution of (3.8) is asymptotically stable. Fig.1 displays
a typical solution in the case y < —A;. The parameter values are

p=8, M =100, (3.9)

and ug(z) = z(1 — x). The asymptotic property is completely preserved by
the IMEX Euler scheme (1.7); stable numerical solutions are obtained even
for rather large At, e.g., At = 1000.

On the other hand, an instability phenomenon is observed for the IMEX trape-
zoidal scheme (3.4) with rather small At. Fig. 2 displays a numerical solution
by the IMEX trapezoidal scheme with At = 1/250. The solution tends to zero
for a while, but irregular oscillation occurs near the ends, which spreads over
the whole interval 2 = (0,1). If At is sufficiently small, the scheme gener-
ates a stable solution. In order to find a value of At at which the asymptotic
property changes, we take At = 1/k for positive integer &, and plot || u1gox |
against &k (Fig. 3), where ugor is an approximate value of u;(100) obtained
with At = 1/k. Fig. 3 shows that the change occurs near At = 1/280. Fig. 4
shows the same results for the ARS3 scheme (3.5). It is observed that the
scheme generates a stable solution for larger At and the change of the asymp-
totic behavior occurs near At = 1/20.

Fig. 1. Exact solution to (3.8) for u = 8, M = 100.

13



Fig. 2. Numerical solution to (3.8) by the IMEX trapezoidal scheme
(3.4).

05

0 . . . 2 xs ’
200 220 240 260 280 300

Fig. 3. Lo-errors at t = 100 versus the partition number k& with
At = 1/k for the IMEX trapezoidal scheme (3.4).
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Fig. 4. Lo-errors at t = 100 versus the partition number k£ with
At = 1/k for the ARS3 scheme (3.5).

4 Stability Analysis of IMEX Runge-Kutta schemes

The asymptotic behavior of numerical solutions to the equation (3.8) is studied
on the basis of the scalar test equation

% = Mo(t) + wo(t), (4.1)

which was proposed by Frank, Hundsdorfer and Verwer [4] (see also [13,16]).
In fact, using matrix diagonalization, the linearized equation of (3.8) around
the trivial solution is converted into a system consisting of equations of this
form with A = A\, £k =1, ..., M. Under this correspondence, application of the
IMEX scheme (1.6) to the test equation (4.1) yields

Vi, = va 1 + AtAAV, + Atp AV,
Uns1 = Un + ANTV, + AtpbTV,,

14



where V,, € C’ is an intermediate variable. By Cramer’s rule, this implies

Una1 = R, 2)vn, a= At\, z = Atp,

where R(a, z) is a function defined by

det(I — @A — zA + abT1 + 2b71)
R(a, z) = det(T — ad) : (4.2)

The function R(w,z) is an analogue of the stability function of the usual
Runge-Kutta method, and it would be reasonable to define the stability region
of the IMEX method as

S ={(a,2) €C? : |R(a,2)| < 1}. (4.3)

It is not easy to comprehend geometric structure of this region. But, in the
case of the equation (3.8), the eigenvalues A\, and the parameter p are both
real. The asymptotic behavior of numerical solutions to (3.8) is characterized
by the restricted region

Sreal =SSN RQ, (44)

which is easily visualized, for its boundary is represented with the algebraic
curves P(a, z) — Q(a) = 0 and P(w, 2) + Q(a) = 0, where

P(a, 2) = det(I — 0A — zA + ab" 1 + 26" 1), Q(a) = det(I — aA).

For the IMEX Euler scheme (1.7), we have R(a,z) = (1+ 2)/(1 — «), and
Sreal js given by |1 + 2| < |1 — «| (Fig. 5). If A < 0 and |u| < —A, then
(o, 2) = (AtA, Atp) is included in S™ for any At > 0. This confirms the
observation that the IMEX Euler scheme generates a stable solution to (3.8)
even for very large At.

On the other hand, we have

_14a/2+(1 +a/2)z + 22/2

R, ) 1—a/2 ’

SreaJ: _2<Z<_04a2+(1+C¥/2)Z+22/2>0f0ra<2,
(z>—-2o0rz< —a), 24+ (1+a/2)z+2*/2<0 for a > 2,

15



for the IMEX trapezoidal scheme (3.4). When A < 0 and 0 < p < —A, the
intersection point of the ray («, z) = (AtA, Atu), At > 0, and the quadratic
curve 2+ (1 + a/2)z + 2?/2 = 0 is given by

Aty = 1 . (4.5)

(—4X = 3p)p — p

Hence, (a,2) = (At Atu) is included in S™ if and only if At < At.
For a fixed 4 > 0, At is an increasing function of A (< —p). When M =
100, the largest negative eigenvalue of the matrix Lj of (3.3) is Agg = —4 -
1002 sin?(997/2/100) ~ —39990.1. Thus, Aty ~ 1/280.8, which is obtained by
inserting A = Agg and p = 8 into (4.5), gives a limit for stability. This confirms
the numerical observation of the previous section (Fig. 3).

For the ARS3 scheme (3.5), we have

64624322+ 2° — V324224 22) — (1+V3)a?(1 + 2)
N 6(1 — ya)? '

R(«, z)

The region S™? is represented in Fig. 7. The curved boundary in the second
quadrant is (a part of) the cubic curve

12+ (4V3—6)a+a? 4 [6 — 2v3a — (1 +V3)a?z + (3 — V3a)22 4 2* = 0.

The intersection point of this curve and the ray (o, z) = (AtAgg, 8At), At > 0,
is given by Aty &~ 1/21.7, which is computed, e.g., by the Newton-Raphson
method. This again coincides with the observed limit for stability (Fig. 4).

-20 -10 0 10

Fig. 5. Sl of the IMEX Euler scheme (1.7).

16



-10 . . . :
-20 -10 0 10

Fig. 6. ST of the IMEX trapezoidal scheme (3.4).

10r

-10 \ L LN
-20 -10 0 10

Fig. 7. S of the ARS3 scheme (3.5).

There are IMEX schemes which satisfy all the conditions of Theorem 2.1 and
have larger stability regions. The scheme

00 0 O 0j[0 0 O
w0 w 0 wlw 0 0 2 —+/2 1
, , w= , k=1——. (4.6)
101 —ww 1lk1—k0 2 2w
01 —ww k1—k0
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was proposed by Ascher, Ruuth and Spiteri [1]. This is constructed on the
basis of an L-stable diagonally implicit method. The scheme

00 0 00 00000
110 1. 00 1{1000
$0—310, 3/3000-. (4.7)
110-111  1[0010
0-111 0010

was recently proposed by Koto [10]. In [10] we have shown that the left formula
gives an L-stable method and that the scheme (4.7) has an excellent stability
property for delay differential equations (DDEs). Both schemes are of order 2
for ODEs.

We have

Rlo, 2) = l—a—l—\/ﬁa—i-(l(l_—wc(xl)—fz—\/ﬁa)z—kz /2

for the scheme (4.6), and

Rla,2) = 1—2a+a?/2 +((11_—j)a3)z +(1/2 —a)z

(4.8)

for the scheme (4.7). The stability regions of these schemes are represented
in Fig. 8 and Fig. 9. The linear boundaries of S of the scheme (4.6) are
z = —aand z = (3—2v/2)a—2. The region S of the scheme (4.7) coincides
with that of the IMEX Euler scheme, except for the range 1/2 < oo < 3/2 (the
right diagram of Fig. 9). This suggests that the scheme (4.7), constructed for
solving DDEs, has a good stability property for reaction-diffusion equations.
Further numerical experiments would be expected for examining whether the
scheme is really useful for practical reaction-diffusion problems.

Acknowledgment. I would like to thank Professor Taketomo Mitsui for his
stimulating discussion on numerical methods for differential equations over
the past twenty years.
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_10 1 1 1 1
-20 -10 0 10

Fig. 8. S of the scheme (4.6).

-20 -10 0 10 -2 -1 0 1 2

Fig. 9. S of the scheme (4.7)
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