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Abstract

Stability of IMEX (implicit-explicit) Runge-Kutta methods applied to delay differ-
ential equations (DDEs) is studied on the basis of the scalar test equation du/dt =
Au(t) + pu(t — 7), where 7 is a constant delay and A, p are complex parameters.
More specifically, P-stability regions of the methods are defined and analyzed in
the same way as in the case of the standard Runge-Kutta methods. A new IMEX
method which possesses a superior stability property for DDEs is proposed. Some
numerical examples which confirm the results of our analysis are presented.
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regions

1 Introduction

Let us consider ordinary differential equations (ODEs) of the form

du

== Lu(t) + g(t,u®)), (1.1)

where u(t) is a vector valued unknown function and L is a square matrix. We
suppose that Lu(t) on the right hand side gives a stiff term, i.e., L has eigenval-
ues whose moduli are so large. A typical example of such equations arises after
the spatial discretization of a partial differential equation of reaction-diffusion
type, and some special numerical methods for solving (1.1) have been proposed
along the idea of treating the linear stiff term by an implicit scheme with a
superior stability property and the nonlinear term by an explicit scheme. A
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prototype of such methods, called IMEX (implicit-explicit) method, is the
IMEX ©-method [8] defined by

Upt1 = Uy + At(1 — O)Luy, + At O Luy, 1 + At g(ty, uy),

where O is a parameter with © > 1/2, At is the stepsize, t, := ty + nAt, and
u, denotes an approximate value of u(t,). This is a mixture of the standard
©-method and the Euler method, and of order 1 in accuracy.

This simple method can be improved in terms of accuracy by generalizing
the method along the idea of Runge-Kutta methods. Consider a pair of two
Runge-Kutta methods represented by the arrays

0(0 O e 0 0[]0 O - 0

colasg asy, 0 -+ 0 colGs O - 0
C3|G31 Q32 Q33 : ’ C.3 ai-n as; 0 : ’ (1.2)

0 oo .0

Cs|Qs1 Qg2 = Qg s—1 Qss Cs|Ts1 Qs - - - as,s—l 0

bi by oo by b by by - by b,

with the same abscissas c¢;. The former corresponds to a diagonally implicit
method and the latter corresponds to an explicit method. We assume that a;;
and @;; satisfy

7 i—1
C,':Zaijzzaij, ’L:1, ..y S (13)
7j=1 7j=1

Then, an s-stage IMEX Runge-Kutta method for (1.1) is defined by

% i—1
Un,z' = Uy + Atz:aij LUn,j + Atz az'j g(tn,j, Un,j)a 7= 1, ey S,
= it (1.4)
Up+1 = Up + Atz bz LUn,z -+ Atzgz g(tnﬂ-, Unﬂ)
i=1

=1

Here, t,; := t, + ¢;At, and U, ; are intermediate variables, which are succes-
sively computed by solving linear equations. By virtue of (1.3), each U, is
interpreted as an approximate value of u(t,).

The accuracy and stability of the IMEX Runge-Kutta methods have been
studied by several authors. In particular, methods of order 2 and order 3 are



constructed by Ascher, Ruuth and Spiteri [2] (see also [16]), methods of order
4 are constructed by Calvo, de Frutos and Novo [5], Kennedy and Carpenter
[11]. A stability property of the methods is also examined in [5].

On the other hand, in some fields of applied mathematics such as mathematical
biology and control theory, reaction-diffusion equations with time delay in the
reaction term are used for studying the effects of interaction of time delay and
spatial diffusion (see, e.g., [14]). In the simplest case, the governing equation
becomes a delay differential equation (DDE) of the form

— = Lu(t) + g (t, u(t), u(t — 7)) (1.5)

after the spatial discretization, e.g., by the method of lines (MOL) approach,
where 7 is a positive constant. As well as many numerical methods for ODEs,
IMEX Runge-Kutta methods can be adapted to the DDE (1.5). However, in
some numerical experiments, instability phenomena (cf. Sect. 5) are observed
which are not easily predictable from numerical results in the case of the usual
reaction-diffusion equations without delay (see, e.g., [9], Chap. IV, Sect. 6).

In this paper, we study stability of IMEX Runge-Kutta methods using the
scalar test equation

Z—?Z = Au(t) + pu(t — 1), (1.6)

proposed by Barwell [3]. Here, A, p are complex parameters, and if A\, p satisfy

lu| < —Re A, (1.7)

the zero solution of (1.6) is asymptotically stable for any 7 > 0. Until now
many studies have been carried out whether numerical methods preserve this
asymptotic property or not (see [4] and the references therein). In the context
of reaction-diffusion equations, this corresponds to studying whether numerical
methods preserve the asymptotic property of solutions to diffusion dominant
equations.

This paper is organized as follows. In Sect. 2, we consider the so-called constant
step size method, an adaptation of the IMEX method (1.4) for the DDE
(1.5) taking advantage of the constancy of the delay 7. We define P-stability
regions of the IMEX methods and give a characterization of the regions in the
same way as in the case of the standard Runge-Kutta methods. Moreover, we
examine P-stability regions of some specific methods in Sect. 3, and modify
the definition and the characterization of the regions into those in the case
where (1.4) is applied to (1.5) by making use of a continuous extension of



(1.4) in Sect. 4. In Sect. 5, we present some numerical examples which suggest
practicality of our stability analysis.

2 Natural IMEX Runge-Kutta methods

Let m be a positive integer and consider a constant stepsize of the form

.
At = —. 2.1
- (21)

Then, t,, — 7 = t,,_p, holds and we can regard U,,_,,; as an approximate value
of u(t,; — 7). An adaptation of (1.4) for (1.5) is given by

i i—1
Upi =un+ At a; LU, ; + ALY G g(tn,ja Un.js Unfm,j)a
j=1 7j=1 (22)

Unt1 = Up + ALY b LU, ,; + At Zgz g(tn,ia Un,, Un—m,i)-
i=1 =1

By the standard argument (see, e.g., [6], I1.17), it is verified that this adap-
tation preserves the order of accuracy of the underlying IMEX Runge-Kutta
method (1.4). In particular, if the coefficients satisfy

the IMEX method (2.2) shows second order convergence for (1.5).

By applying (2.2) to the test equation (1.6), we obtain the difference equation

1 i—1
Un,i = U, + At Z A4 )\Un’j + At Z aij ,LLUn_m,j,
= i (2.4
Upsr = Up + AtY b AUy + ALY b uUp ms
=1 =1

By means of

A= [aij]f,jzl, A\ = [aij]f’jzl, b= [bl, ...,bs]T, BT = [?)\1, ,BS]T,
Up = [Uni, s Un)ts 1=11, ..., 1]7,



we can rewrite (2.4) in the form

U, = u,1 4+ AU, + B/T Un_m, (2.5)
Upt1 = Up + abTUn + ﬁBTUnfm) '

where o := At), 5 := Atp. The P-stability region of the IMEX method (2.2)

is defined as follows.

Definition 2.1 The P-stability region of the method (2.2) is the set Sp of
the pair of compler numbers («, ), such that det[I — aA] # 0 and the zero
solution of (2.5) is asymptotically stable for any m > 1.

Let r(a) denote the stability function of the Runge-Kutta method defined by
A and b, and let S4 denote the stability region of the method, i.e.,

r(@)=14+ab" (I —ad)™1, Sy={aecC: |r(a)| <1}

Moreover, put

Po(z) = det[] — 0A — zA + a1b” + 21b7), Q. = det[] — aA] (2.6)

and define the set ', by

Fo={z€C: |Py(2)] =|Qa| }- (2.7)

We can rewrite I', as

Io={2€C: Py2) — Que? =0, 0< ¥ < 2r}.
Hence, I', is a closed curve, and there is a point on I', which achieves the
value

o, =1inf{|z| : z € Tu}. (2.8)

Using this value we can characterize P-stability regions as follow.

Theorem 2.2 Assume that det[I — aA] # 0 and consider the following three
statements:

(a) a € Sa and |B| < 04;
(b) (o, B) € Sp;



() € Sa and |f| < o,.
Then, we have (a) = (b) = (¢).
Putting R, (z) = P.(2)/Qq, we further rewrite T, as

Fo={2z€C: |R,(2) =1}

Theorem 2.2, which can be proved by Lemma 8 in [15], may be regarded as a
special case of Theorem 13 in [15]. Nevertheless, Theorem 2.2 has a significance
especially from a viewpoint of application. IMEX Runge-Kutta methods were
not supposed to be an object of study in [15]. Also, we present a proof using a
generalization of Lemma 8 in [15] by in ’t Hout and Spijker [10], which gives
a better perspective as to a variation of Theorem 2.2 described in Sect. 4 (see
also [12] on a similar application of the generalization).

PROOF. Since (2.5) is rewritten as

I—ad0| | Un | |01} |Uss —BAO|| U | |0
—ab? 1| | Upys 0-1 Uy, —ﬁgT O | un—ms1 0 ’
the characteristic equation of (2.5) is given by
det[]\"V () + W (A)] =0, (2.9)
where
AI —ad) -1 —ABA 0
vy = | T | T
—dab” A -1 —A\BbT 0

As for the equation (2.9), consider following three statements:

(a)" det V/(\) # 0 for any |A| > 1 and sup p[V(A\) "W (N)] < 1;
A=t
(b)" all the roots of (2.9) lie inside the unit circle for any m > 1;
(c) det V(X) # 0 for any |A| > 1 and sup p[V(A)"'W()\)] < 1.
|

Al=1
Here, p[-] denotes the spectral radius of a matrix.
It is easily verified that

deg{det[]\"V(A\) + W (A)]} = deg{det]\"V(A)] = (m+1)(s+1)



for any m > 1. Hence, by Corollary 1.2 in [10], we have (a)) = (b)’ = (c)".

Since V() is rewritten as

A 0 ] {JaA )\11}
V(/\) == ’
A" (I — aA)™' X =r(a)

we get

det V(A) = X*(A = r(a)) det[I — aA]. (2.10)

Thus, det V() # 0 for any |A| > 1 if and only if o € Sy.

Moreover, for ( € C, we have

V) +WQ) =

A 0 ”Ma(ﬁg) )\11]
—ALq(BC) A — Ra(50) 0 1|

where My(z) = I — @A — zA, Lo(2) = (abT + 2bT)(I — aA — zA) 1,

Ro(z) =1+ (b + 20T)(I — A — zA)™'1,

and R,(z) is rewritten as Ry (z) = Pu(z)/Q4 by Cramer’s rule. Hence, we get

det[V(A) + (W (N)] = X[@aA = Fa(BC)], C€C, (2.11)

which implies that if o € Sy,

AV W] = (inf{I] : QA — Pa(8) = 0}) (2.12)

for |A| > 1. From this it is verified that sup p[V (A\)"'W(\)] < 1 if and only
IAl=1

if |8| < 04 and sup p[V(A\)'W())] < 1 if and only if |8] < 04. O
|A|=1

3 P-stability regions

In this section, we investigate P-stability regions of several IMEX Runge-
Kutta methods. First, we consider the IMEX ©O-method, represented by the



arrays

00 0 O 0100
1l1-06, 110 .
1-00 10

As is well known, the ©-method is A-stable; the stability region of the method
is the outside of a circle with center 1/(20 — 1) and radius 1/(20 — 1) when
© > 1/2 and the left half plane when © = 1/2. Moreover, by the equations
(2.6) we get

P,(z)=1+(1-0)a+z2 Q,=1-060q.
Hence, the set I',, is a circle with center —1 — (1 — ©)« and radius |1 — Oa/,

and we have

00 =||1- 00| = [1+ (1 - ©)al|. (3.1)

When © =1,

O = ‘|1—a| —1‘ > |a] > —Rea
holds for any Re o < 0, which implies that the IMEX ©-method with © = 1 is
P-stable, i.e., the P-stability region of the method contains the region {|3| <

— Rea}. On the other hand, in the case « is a negative real number, (3.1) is
rewritten as

—a (1+(1-6)a>0)

724 (1-20)a (1+(1-©)a<0)

Hence, the IMEX ©-method is not P-stable when © < 1 (cf. Fig. 1).

In general, it is difficult to find P-stability regions by an analytic method. A
certain numerical method is necessary to investigate the regions.

Let N be a positive integer, and divide the interval [0, 27) into N equal parts:

0=ty < <---<Ihp=kAY <---< Iy =21, AY =271/N.

The set ', is approximated by

Ton={2€C: Py(2) —Que” =0, k=0,1, ..., N — 1},



o=12 o 0

Fig. 1. P-stability regions of the IMEX O-methods.

and we have

Ou :A}i_rgoaa,]v, Oan =inf{|z] : 2 € Ty n},

which follows from the fact that the roots of P,(2) —Qq € = 0 are continuous
functions of 9. Thus, we can obtain an approximate value of o, by taking a
sufficiently large N and solving N algebraic equations with some numerical

method, e.g., Durand-Kerner’s algorithm (see, e.g., [1,13]).

We compare two IMEX methods defined by the arrays

000 0 000 0
11/21/2, 141 0

1/21/2 1/21/2
and
00 0 0 00 0 0
70 v 0 yly 0 0 2 -2 1
) ) Y= J 0=1——.
101—yy 1161-60 2 2y
01—~y 01-60

(3.2)

(3.3)

The former is a combination of the trapezoidal rule and Heun’s second order
method (the explicit trapezoidal rule). The corresponding method is called the
IMEX trapezoidal rule in [9]. The latter is a scheme constructed by Ascher,
Ruuth and Spiteri [2] on the basis of an L-stable singly diagonally Runge-
Kutta method of order 2. Both methods are of order 2 as IMEX method. By



the equations (2.6) we have

a a 22 o
Pa(z)=1+§+(1+§>z+5, Qa=1—§

for the IMEX trapezoidal rule (3.2) and

Pa(z):1—a+\/§a+(1—a+\/§a)z+22—2, Qo = (1 —ya)?

for the Ascher-Ruuth-Spiteri (ARS) method (3.3).

For both methods, approximate values of o, are computed by solving quadratic
equations. Fig. 2 shows the P-stability regions of the two IMEX methods
in the case o is a negative real number. The boundaries determined by o,
were drawn by taking N = 1000 and solving the quadratic equations by the
quadratic formula. In the case of the IMEX trapezoidal rule, the width of the
region decreases and tends to zero as |a| increases, whereas the width increases
infinitely in the case of the ARS method (3.3). This suggests that the ARS
method has a better stability property than the IMEX trapezoidal rule as for
DDEs.

Ascher-Ruuth-Spiteri method

IMEX Trapezoiad rule?

-30 -25 -20 -15 -10 -5

Fig. 2. P-stability regions of the methods (3.2) and (3.3).

The P-stability region of the ARS method is larger than that of the IMEX
trapezoidal rule, but it is rather small compared with those of P-stable meth-
ods. By increasing the number of stages, we can construct a method with a
larger P-stability region.

10



As an illustration, we consider a 4-stage IMEX Runge-Kutta method defined
by the arrays

00 0 00 00000
110 1 00 1{1000

o—-310, ijfo000. (3.4)
110-111 1{0010

0-111 0010

This method satisfies (2.3), i.e., it is of order 2. The stability function of the
diagonally implicit method is

_1-2a+0?/2
(@) = g

and it is easily verified that the corresponding method is L-stable. Moreover,
we have

Pa(z) = 1_2a+%2+(1_2a)2+ (% _a)ZQa Qa = (1 _a)3: (35)

and we can compute approximate values of o, by solving quadratic equations.
We plot o, versus Rea for some fixed values of Im « in Fig. 3. Each curve
indicates the approximate values of o, computed with N = 1000. This figure
suggests that o, > — Req, i.e., the method is P-stable, which can be verified
analytically in the case « is real.

Ima =150

Fig. 3. Values of o, for the method (3.4).
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Proposition 3.1 Consider the IMEX method defined by the arrays (3.4). If
« is a negative real number, we have 0, = —a.

PROOF. From (3.5) it follows that P,(—«) = Q.. Hence we have —a € T,

and o, < —qa.

To show o, > —a, it suffices to verify that |P,(z)| < |Qq| for any |z| = —a,
since it implies that |P,(z)| < |Qq| for any |z| < —a by the maximal modulus
principle.

Differentiating p(1) = |Py(—ae”)[?, 0 <9 < 27, we obtain

1-2a+a?—a?
a(2 — da + a?)

p'(9) = 202(1 — 2a)(2 — 4a + o?) sin(0) ( — cos(ﬁ)) :

When —1//3 < a < 0, we have (1 —2a+a?—a?)/[a(2—4a+a?)] < —1, and
p(Y) has a maximum at ¥ = 0 and a minimum at 9 = 7. When a < —1//3,
we have —1 < (1 — 2a+ a? — o®)/[a(2 — 4a + a?)] < 0, and p(¥9) has relative
maximums both at ¥ = 0 and ¥ = 7, but p(7) = (1 —a— a? — &?)? < p(0) =
|Qq|? for @ < 0. Hence, in both cases, p(9) < p(0) = |Qq|? for any 0 < 9 < 27,
which implies that |P,(2)| < |Qa] for any |z| = —a. O

4 Continuous IMEX Runge-Kutta methods

We can define continuous extensions (dense outputs) of IMEX Runge-Kutta
methods in the same way as in the case of standard Runge-Kutta methods.
Let w;(6), w;(0) be polynomials which satisfy

B

w;(0) =0, w;(1) = b;, @;(0) =0, @(1)=b;.

For the equation (1.1)

3(tn + A0) = un + A Y wi(0) LU»; + At Y @i(0) g(tng, Uns),  (4.1)

i=1 =1

with 0 < @ < 1, gives an approximate solution on the interval [t,, t,1]. If
the polynomials w;(#), w;(#) satisfy suitable order conditions (see, e.g., [11],
2.1.7), the continuous extension (4.1) preserves the order of accuracy of the

12



underlying IMEX Runge-Kutta method (1.4). For example, the IMEX method
is of order 2 and w;(0), @;(0) satisfy

S wi(®)=6, Ya0) =0,

the approximate solution is O(At?) accurate on the whole integral interval.
By replacing the DDE (1.5) with an ODE in the form

du_

o = Lu(t) + g(t,ult), 6t — 7)) (4.2)

in each interval [t,, t,11], we can apply the continuous IMEX method to the
DDE (1.5). In particular, under the constraint (2.1), the method is represented
as

1 i—1
Un,i = Up + At Z Q5 LUn,j + At Z aZ] g(t’n,ja Un,ja q)n—m,j)a
j=1 j=1

(I)n,z' = Up, + At Z U)J'(Ci) LUnJ' + At Z ’lT)j(CZ') g(tn,ja Un,ja q)n—m,j); (43)

Jj=1 Jj=1
s s
Up+1 = Up + At Z b; LUn,z + At Zgz g(tn,ia Un,i; (Dn—m,i)a
=1 i=1

where ®,,; := ¢(t,;). Moreover, by applying (4.3) to the test equation (1.6),
we get

i i—1
Un,i = U, + At Z Qg5 )‘Un,j + At Z aij ,U'(I)n—m,ja

=1 j=1
S S
D = tn + Aty wi(ci) \nj + At Y @j(ci) b Prmyjy

Upt1 = Up + At Z bz )\Un,z + At Z gz 1% (Dn—m,ia

i=1 =1

which is rewritten in the vector form

U, = u,1 + ¢ AU, + BAD,,_,,,
&, = u,1 + aWU, + BWd, ., (4.4)
Up+1 = Up + abTUn + BZT@n_m,

13



where

Oy = [Bnt, ooy Pul”, W=[wj(e)]},_y, W =][d;(c:)];

ij=1’ ij=1°

Using (4.4) we can define the P-stability region of the continuous IMEX
method as follows.

Definition 4.1 The P-stability region of the continuous IMEX Runge-Kutta
method (4.3) is the set Sp of the pair of complex numbers («, 3), such that
det[I — aA] # 0 and the zero solution of (4.4) is asymptotically stable for any
m > 1.

Put
. I —aA+alb? —2A + 2167
P,(z) = det N R (4.5)
—aW + alb? T — zW + 2167
~ I—aA —zA
Qa(2) = det |- (4.6)
—aW I —zW
Define fa and 7, by
To={z€C: |P(2)| = 1Qu(2)[}, (4.7)

and 3, = inf{|z| : z € 'y}, respectively. We can prove the following theorem
by the same argument as in the proof of Theorem 2.2.

Theorem 4.2 Assume that det[I — aA] # 0 and consider the following three
statements:

(a) a € Sy and |B| < Ga;

(b) (CV, ﬂ) € SP;
(c) € Sy and |B] < Gq.

Then, we have (a) = (b) = (¢).

By way of illustration, we consider the IMEX method (3.4) with the linear
interpolant defined by

wy (0) = Z wy(0) = —0, ws(0) = wy(0) =0, (4.8)



For the method we have

0 0 o0 0] (00 0 0]
0 -1 1 1 _ loo 10
W: , W:
0-1/21/21/2 001/20
0 -1 1 1| 00 1 0]

and

~ 1

Qa(2) = 5(1 — a)2(2 —2a — 2),

~ o 1
P,(z)=1-2a+ 5 + 5(1 —3a+ a?)z.

Since Qq(z), P,(z) are of degree 1 with respect to z, the set L'y becomes a
circle, and its center and radius are given by —(/k and p/|k|, respectively,
where

1-3a+a??—|1-al,

|
(2—4da+®)(1-3a+a’) +2(1 - a)*(l —a)?
|

(2 —a)?(1 —a)*(1 - 2a)|.

K
P
Moreover, since k is rewritten as

k=—Rea(2 —Rea)(l — 2Rea) + (Ima)?(5 — 2Re ),

it is positive if Rea < 0. Hence, 7, is given by

= |p—I¢l|/x (4.9)

for Rea < 0. When « is a negative real number, ¢ is reduced to ( = (2 —
a)(1 —2a)(2 — ba + 3a? — a?) and &, is reduced to 5, = —a. We plot the
curves 7, computed by (4.9) in Fig. 4, which suggests that 6, > — Req, i.e.,
the method (3.4) with the linear interpolant (4.8) is P-stable.

15



-40 -20 0

Fig. 4. Values of 7, for the method (3.4) with the linear interpolant.

5 Numerical examples

In this section, we present some numerical examples. We consider the following
delayed reaction-diffusion equation (cf. [14], p. 220) on the interval Q = (0, 1)

v v ,
T _nZ7 _ S |
ot D Ox2 + ,UU(t T, 37)[1 + U(t, ,’13) ], t>0, x €, (5 1)

under the homogeneous Dirichlet condition

W(t,0) = v(t,1) =0, t>0, (5.2)

where D is a positive constant and p is a real parameter. This model is derived
from a sort of delayed logistic equation by taking the effect of spatial diffusion
into account.

Let M be an integer, Az := 1/M and define the mesh points 2o = 0 < z; <
<o <mj=jAx < -+ <z = 1. We use the notation v/ (t) for an approximate
function of v(¢, z;). By replacing the second order spatial derivative with the
second order centered difference, we obtain an MOL approximation

du_

= Lu(t) + g (u(t), u(t = 7)), (5.3)

16



where

u'(t) 21 0 0
u?(t) 1 -2 1 0
D
u(t)z 5 L:E 0 1 -2 0 )
uM=1(¢) 0 0 1 =2

and the j-th component of g(u(t), u(t — 7')) is pu? (t — 7)1 +u?(¢)?].

The eigenvalues of the matrix L are

By the linearization method (see, e.g., [7], Chap. 10), it is shown that if u
satisfies

(5.4)

4D . , Az
< =0 = A0, g (TATY,

the zero solution of (5.3) is asymptotically stable for any 7 > 0. The upper
bound —\; increases as M increases and is contained in the range 9D < —)\; <
72D = 9.8696D for M > 3. Fig. 5 shows a typical behavior of the solution of
(5.3) in the case the condition (5.4) is satisfied. The parameter values are

D=1, p=-8, 7=1, M =100, (5.5)

and the initial condition is given by

w(t)=z;(1—a;), 7<t<0,1<j<M-1. (5.6)
The solution oscillates and is damped, as is often seen in the case of the usual
delayed logistic equation without diffusion.
P-stable methods may preserve the asymptotic property independent of the
stepsize At. Fig. 6 shows the numerical results by the ©-method with © =1

and the method (3.4) in the case where the parameter values are

D =10, p=—-80, =1, M = 1000, (5.7)

17



Py /
L2752
"l'\ "v \\\\0

75
g \ :;‘::::-
l"""l' 0,‘; ' \ 0"’ ¢‘\“.'0'.255~..
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'IA'A\ \\\:Z' \ "o' .~,l;:~:.~;¢:,-,
///”"Q Y

Fig. 5. Solution of (5.3) for D =1, u = -8, 7 =1, M = 100.

and the initial condition is given by (5.6). The approximate values u>® ~

v(ty, 0.5) for m = 1 are plotted, where m is the positive integer that is used for
defining At in (2.1). As for these two methods and the method (3.4) with the
linear interpolant (4.8), stable numerical solutions are obtained independent
of the value of m.

O "P-stable" 2nd order method

X IMEX ©-method with ©® =1

0 5 10 15 20 25 30 35
Fig. 6. Numerical results by P-stable methods.

On the other hand, in the case of the IMEX ©-method with © < 1 or the ARS
method (3.3), the asymptotic property of the numerical solutions changes at
some value of m. For example, the numerical solutions by the IMEX ©-method
with © = 1/2 diverge when m < 39 and tend to zero when m > 40 for the
parameter values (5.7) (Fig. 7). When m = 40, § := pAt = —80/40 = —2.
This coincides with the bound derived from the P-stability region (Fig. 1).
In the case of the method (3.3), such a change occurs between m = 31 and
m = 32.

In the case of the IMEX trapezoidal rule, the divergence of the numerical
solutions continues until rather large m. Fig. 8 shows a numerical solution
by the method with m = 275 for the parameter values (5.5). It is still un-
stable, whereas stable solutions are obtained even by the IMEX ©-method
with ® = 1/2 or the ARS method (3.3) with m = 4 for these parameter
values. The instability of the IMEX trapezoidal rule is explained from the
P-stability region of the method, whose width rapidly tends to zero as |«|
increases (Fig. 2).
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18



Fig. 7. Approximate values 4>’ by the IMEX ©-method with

0 =1/2.

Fig. 8. Numerical solution by the IMEX trapezoidal rule.
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