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Abstract

Water pollution has been a crucial problem in many countries and has attracted
researcher’s attention from all over the world.

In a non-tidal river, from the beginning of material input, mixing and reaction, to the
end of material output, the system considered should be dynamic and stochastic.

The stochastic differential equation (SDE) is a theory that studies stochastic process.
It can describe the physical relationships of different factors, and can predict the effects
of future loading and control policies on the environment. It has the advantage of water
pollution control. This would then allow an attempt to formulate a general model on
self-purification non-tidal rivers.

Most water pollution models have a structure of input/output system. However these
models do not assume explicit knowledge of pre-biochemical reaction, such as the explicit
pre-reaction concentration. An internally descriptive model exploits the available infor-
mation on the phenomena determining the system’s behaviours, e.g. the physical and
biochemical mechanisms which control the internal descriptions. To exploit the informa-
tion of pre-biochemical reactions is an essential task in modeling.

This paper firstly, designs a structure of input/mixing/output model (we will call it
the three-steps model); secondly, it represents each process of material input, mixing
and output by an SDE respectively, where the additional equations representing mixing
processes exploit the information of pre-biochemical reactions; and thirdly, it shows that
the three-steps model has the advantage of prediction and control, using the numerical
solutions of SDEs of the three-step model.

The stochastic numerical methods applied here are discrete time approximation meth-
ods subject to the Ito-Taylor expansion schemes.
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1 Introduction

Our environment is worsening and our water supply is decreasing, however our depen-
dence on this natural resource remains. Every year, we need 270,100 million tons more
water because of 90 million increasing population. Every year, approximately 25 million
persons die as a result of water pollution. To protect the environment and keep water
free of pollution is a global responsibility.

Although various wastewater treatment plants are established deal with water pol-
lution, most of the wastewater is discharged directly into rivers or lakes. Therefore, it
is important for us to understand what the mechanism in a natural purification system
is. To understand how to control and predict water quality becomes a project of our
studying. Having considered the objectives, a model must be developed to represent the
system.

A non-tidal self-purification river system is a basic system for studying the self-
purification system.

When assessing the quality of water in a non-tidal self-purification river, many fac-
tors should be considered: the level of dissolved oxygen (DO); the presence of nitrates,
chlorides, phosphates; the level of suspended solids; environmental hormone; chemical
oxygen demand (COD), such as heavy metals, and the presence of bacteria. However, in
a study about general water quality, it would be difficult to consider in detail all of these
factors. Therefore we should choose some principal measures of water quality that will
indicate the general quality of the river. In this paper, four factors are considered: DO,
biochemical oxygen demand (BOD), substrate, and sludge flow rate.

A good water pollution model on a non-tidal river should possess the following prop-
erties.

(1) It should be a dynamic (time varying) or stochastic model. From the beginning
of the material input, mixing and reaction, to the end of material output, the system
is dynamic and stochastic on inner components, such as turbulent influx in feed-rates,
random perturbations in concentrations; and the system changes with changing factors,
such as wind gust, varying temperatures and sunlight.

(2) It should adequately characterize the important stochastic, dynamic and steady
state aspects of the system behaviour, such as a proper structure of model for representing
the system’s process

(3) If possible, it should provide a reasonable mathematical approximation of the
physical biochemical changes (interaction) occurring in the river system. This means the
degree and structure of interaction between variables and/or model components should
be identified [2].

Research on the modeling of the BOD-DO interaction in a non-tidal river has been
dominated by the classical model of Streeter and Phelps (1925), which first appeared in
1925, and has been improved in various ways by other investigators such as Dobbins and
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Camp, Peter Young and Bruce Beck, C.J.Harris, etc. [5].
The class of continuous-time, internally descriptive models are all derived from the

application of mass balanced principles to the river stretch. The analysis of these models
is well suited in the background of chemical process theory (see, e.g. Himmelblau and
Bischoff, (1968)), since, after all, the behaviour of a reach of river can be viewed along
lines similar to that of a chemical reactor.

By the criterion of the quantity of the fluid mixing, the physical bio-chemical models
are distinguish as follows [1][5]:

(1) No mixing (Zero diffusion)

∂c

∂t
= f1(

∂c

∂x
, c(x, t)).

(2) Partial mixing (turbulent type diffusion)

∂c

∂t
= f2(

∂2c

∂x2
,
∂c

∂x
, c(x, t)).

(3) Intimate mixing, with simple transport delay time Td between spatial points x0,
x1. (Peter Young and Bruce Beck (1974)).

∂c

∂t
= f3(c(x1, t), c(x0, t− Td)).

In chemical engineering terminology the model type (3) corresponds to continuously
stirred tank reactors (CSTR, Himmelblau and Bischoff, (1968)) plus transportation delay
idealization of a reach river.

(4) SDEs type;

dct = a(c, t)dt + b(c, t)dWt.

with their appropriate boundary conditions.
Where W(t) is a Wiener process. In detail, see section 2.
Functions fi, i = 1, 2, 3. are in general, nonlinear functions of the substance concen-

tration c.

All of these models are dynamic, applying mass balance law.
From the theoretical point of view:
a) Model type (2) would appear to represent the system dynamics most accurately. It

counts the values of material concentration reacting both from the time state and from
the variable locations in space along the river stretch.

b) Model type (3) may appear to be a strange idealization of the river system. It
counts the values of material concentration reaction simplifying by minus a delay time Td.

c) In model type (4) e.g. Harris’ model, by a noise term, it lumps the space pa-
rameters and accounts for the system errors and measurement errors. It just simplifies
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the representation. For controllable, predictive and practical dynamic investigations the
lumped parameter model type (4) seems the most attractive, because it takes advantage
of the SDEs theory which is a theory studying stochastic process. It can describe the
physical relationships of different factors, and can predict the effects of future loading and
controlling policies on the environment.

SDEs will be of great benefit to water pollution control and study.

Although these models have a structure of input/output, they do not assume explicit
knowledge of pre-biochemical reactions, such as the explicit pre-reaction concentration.

In this paper, we try to design a structure of the input/mixing/output model and
call it the three-steps model. These three steps can be represented respectively by three
stochastic differential equations (SDEs). For these three steps we can take random input
as a dynamic process subject to turbulent input only; and take substance-mixing process
as a continuously stirred process so that it contributes to construct a relatively stable
state for biochemical reaction processes, and by a mixing process, it produces an average
value of concentration for calculating the result of biochemical reactions.

2 Harris’ input/output model

The Harris’ model described by SDEs (model type (4)) is used as the starting point
for this study [1].

A banded DO-BOD model:

dqi/V i = (αi + 1− βi · qi/V i)dt + (2γi · qi/V i)1/2 · dWt (input)

dci
d = qi/V i{(ci−1

d − ci
d) + K i

2 · (ci
ds − ci

d)−Ki
1 · Ci

b + mi + δi
1} · dt (DO)

dci
b = qi/V i{(ci−1

b − ci
b)−K i

1 · (ci−1
b − ci

b)−Ki
2 · Ci

d + Ri + δi
2} · dt (BOD)

where
i: the scalar of i-th reach of a river,
W(t): a Wiener process,
qi: sludge volume flow rate;
V i: volume of i-th reach of river,
ci
b: BOD concentration,

ci
d : DO concentration,

ci
ds: saturation concentration of DO,

K i
2: DO re-aeration rate,

K i
1: BOD decay rate,

mi: net rate of removal of DO by mud deposits,
Ri: the addition of BOD due to local runoff from adjoining land and effuent discharge

from sewage plants,
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δi
1 and δi

2,: accounted for photosynthetic effects on algae populations,
qi: evaluated so that it always remains non-negative (for physical compatibility) and

is subjected to band limited perturbations (filtered white noise). It can be demonstrated
for the above models that qi is stationary Markov process with decay parameter βi, mean
value (αi + 1)/βi and variance γi(αi + 1)/βi. These parameters allow adequate modeling
for a particular physical environmental configuration, and may be found by standard
statistical estimation techniques.

Equations of BOD and DO are ordinary differential equations but are modeled as
SDEs in the above, due to their functional relationships with the random component qi.

If Harris’ model is applied to a self-purification non-tidal river system, there are two
improprieties.

First, during a short time interval dt, the value of input BOD/ DO concentrations
appears to improperly act as the value of biochemical reacting. In fact, the average
concentration over the time interval dt and over space volume V i would be a suitable one.
The value of input concentration would be above this average level in general.

The reasons are: first, after the material input, the BOD concentration is reduced by
a mixing process and a biochemical reaction; second, in the majority of the cases, the
parameters used are obtained from laboratory analyses, namely, they are obtained from
a quite stable or steady state. Here, the “mean of stable” is similar to “the sense of
average”.

Usually, there are two kinds of parameter sets, one is obtained from laboratory anal-
yses,(e.g. for ki

2 ,the re-aeration rate constant and ki
1, the BOD decay rate constant, see

Henry’s law, or for ki
1 see the discussion of Hansen and Frankel, (1965). (BOD estimation

takes 5 days) ); another one is obtained from applying parameter estimation techniques
to the set of field observations data sets, or those obtained from empirical relationships
(e.g. for ki

2, the re-aeration rate constant, see Owens and colleagues,(1964)) [5].
It would be more suitable to apply the value of average concentration, instead of

inputting one to calculate the reaction concentration would be more suitable.
The reasons why we apply the parameters obtained from laboratory analyses are: first,

a quite stable or steady state is a basic requirement for modeling and developing; second,
we will discuss the model from a theoretical sense rather than verifying it against field
data; third, we are interested in what the results will be happened to the two different
structures of models if the same parameters and similar equations are applied; and fourth,
our goal is to formulate a general model on the self-purification river system.

Second, the influent volume rate of sludge qi equals the effluent volume rate in Harris’
model. If we consider a long stretch of river, it would be inappropriate, because in general,
the input volume rate of sludge (wastewater) is not equal to the output one.

How can we solve these two problems?
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3 An idea of the wastewater treatment plant

Figure 1: Flow scheme of active sludge control

There are variations of wastewater treatments, in which the activated sludge reactor
(since its introduction in 1914), i.e. biochemical treatment seems to be the most active
one. Usually, the wastewater treatment plant consists of three tanks, a sedimentation
(equalization) tank, a reactor tank and organism separation tank, and a return sludge
system as illustrated in figure 1.

The main objective of the sedimentation task is that it removes the most obvious
identifiable solids such as grease and floating matter, and reduces BOD and SS (suspended
solid) concentrations.

The reactor tank is normally achieved by some from of aerobic biological process,
this means the organic matter is degraded by aerobic micro-organisms, and is aimed at
further removing the non-settleable, largely organic matter to produce an effluent suitable
for discharge into inland streams. To satisfy the demand exerted during reaction process,
an oxygen replenishment re-aeration system must be present in sufficient quantities to
prevent DO levels from falling to the point where the water cannot support the range of
aquatic life.

Organism separation tank is used to remove or re-use dissolved organics, so that the
effluent may be rendered suitable for discharge [9].

So far, we know the function of the sedimentation tank has made the system process
stable, from a theoretical view.

Based on this knowledge, we can understand that the sedimentation tank, prior to
reaction, is used to contribute to process stability in modeling. From this we know
that the mixing process is completely prior to the reaction process, i.e. the pre-reaction
concentration in the reaction tank equals the mixing concentration in the sedimentation
tank.
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4 On the three-steps model

Now, we apply the idea that the function of the sedimentation (equalization) tank is a
process of fluid mixing, to a self-purification river system. Then we design a new structure
of the model as Figure 1, from which, we can respectively study the mixing process and
biochemical reaction process closely.

Figure 2: the three-steps model

Figure 2 illustrates the process of material input/mixing/output. (It is called the
three-steps model.)

In the three-steps model, physical process (mixing) and biochemical process are united,
(i.e. they happen interactively during the same time interval), but they are not stringed
together (i.e. they happen one by one at two successive but different time intervals.) It
is not like a water treatment plant where the mixing process and biochemical process are
stringed together.

More strictly speaking, “united” means that the two processes are interactive and are
performed in the same time interval dt. Namely, there is a circle of exchanged process
subjects to the value of substance concentration transporting: output value of mixing
c1 → input reaction value c2 → output reaction value c3 → a part of the next mixing
value (c3 · V + c0 · q0)/V → c1 again.
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These equations represent the three-steps model, and correspond to the sludge flow
rate, the concentration of substrate (pollutant), BOD and DO as follows:

a) The equations of the sludge flow rate and the concentration of substrate (pollutant):

dq0 = (α1 + 1− β1 · q0) · dt + (2γ1 · q0)
1/2 · dW1. (1)

dV = (q0 − q1) · dt. (2)

dcs0 = (α3 + 1− β3 · cs0)/V · dt + (2γ3 · cs0/V )1/2 · dW3. (3)

dcs1 = q0 · (cs0 − cs1)/V · dt. (4)

V · dcs3 = {q2 · (cs2 − cs3)−K51 · V · [Kb2 · q2 + K53 · (cs2 − cs3)]} · dt. (5)

where q0 = q2, q1 = q3 = E(q0) = (α1 + 1)/β1,
K53 = ∆cb/∆cs=yields constant,
q0: influent sludge flow rate,
q2: effluent sludge flow rate,
V: the volume of the river stretch,
cs0: incoming substrate (pollutant) concentration,
Kb2: micro-organism concentration,
K51: growth rate constant for micro-organisms,

b) BOD and DO equations:

dcBOD0 = (α6 + 1− β6 · cBOD0)/V · dt + (2γ6 · cBOD0/V )1/2 · dW6. (6)

dcBOD1 = q0/V · (cBOD0 − cBOD1) · dt. (7)

dcBOD3 = {(q2/V −K81) · (cBOD2 − cBOD3)−K82 · cDO3 + δ8} · dt. (8)

dT = (α9 + 1− β9 · T ) · dt + (2γ9 · T )1/2 · dW9. (9)

cDO0 = 482.5/(32.6 + T ). (10)

dcDO1 = q0/V · (cDO0 − cDO1) · dt. (11)

dcDO3 = {q2/V (cDO2 − cDO3)−K82(csatu − cDO3)−K81cBOD3 + mremoval + δ11}dt. (12)

where:
T: temperature,
cDO: DO concentration,
cDO0: for benefit of simulation, to show that it is dynamic, where it is assumed to be

affected by the factor of temperature only and is evaluated by Henry’s law,
cBOD: BOD concentration,
csatu: saturation concentration of DO,
K82: DO re-aeration rate=0.3 · 1.02T−20, by Henry’s law,
K81: BOD decay rate =0.17 · 1.047T−20, by Henry’s law,
mremoval: net rate of removal of DO by mud deposits,
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δ8 and δ11: accounted for photosynthetic effects on algae populations,
and set q1 = q0, q3 = q2, E(q0) = (α1 + 1)/β1.

Comparing to Harris’ model, the term of R which is the addition of BOD due to local
runoff from adjoining land effluent discharge from sewage plant. Here it is accounted in
the influent equation.

Define the state variables, and rewrite the equations as:
q0 = x1, V = x2, cs0 = x3, cs1 = x4,
cs3 = x5, cBOD0 = x6, cBDO1 = x7, cBDO3 = x8,
T = x0, cDO0 = x9, cDO1 = x10, cDO3 = x11,

dx1 = (α1 + 1− β1 · x1)dt + (2γ1 · x1)
1/2dW1. (13)

dx2 = (x1 − q1)dt. (14)

dx3 = (α3 + 1− β3 · x3)/x2dt + (2γ3 · x3/x1)
1/2dW3. (15)

dx4 = x1 · (x3 − x4)/x2dt. (16)

dx5 = {q2 · (x4 − x5)−K51 · x2 · [Kb2 · q2 + K53 · (x4 − x5)]}/x2dt. (17)

dx6 = (α6 + 1− β6 · x6)/x2dt + (2γ6 · x6/x2)
1/2dW6. (18)

dx7 = x1/x2 · (x6 − x7)dt. (19)

dx8 = {(q2/x2 −K81) · (x7 − x8)−K82 · x11 + δ8}dt. (20)

dx0 = (α9 + 1− β9 · x0)dt + (2γ9 · x0)
1/2dW9. (21)

x9 = 482.5/(32.6 + x0). (22)

dx10 = {x1/x2 · (x9 − x10)}dt. (23)

dx11 = {q2/x2 · (x10 − x11) + K82 · (K11,1 − x11)−K81 · x8 + K11,2 + δ11}dt. (24)

So far, a complete water pollution model for the non-tidal river system is obtained.

Combining the advantages of Harris’ model, the three-steps model has the advantages
of structure and information, such as applying the mass balance law, a general form of
CSRT (continuously stirred reaction tank), taking the advantages of SDEs, fixing the
three-step strategy with three SDEs representation, describing a separate but interacting
relationship of material mixing processes and biochemical reaction processes.
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For the benefit of comparing the input-output model (Harris’ model), the equations
of Harris’ model are rewritten as follows:

dy1 = (α1 + 1− β1 · y1)dt + (2γ1 · y1)
1/2dW1. (25)

dy2 = (y1 − q1)dt. (26)

dy3 = (α3 + 1− β3 · y3)/V dt + (2γ3 · y3/y1)
1/2dW3. (27)

dy5 = {q2 · (y3 − y5)−K51 · y2 · [Kb2 · q2 + K53 · (y3 − y5)]}/y2dt. (28)

dy6 = (α6 + 1− β6 · y6)/V dt + (2γ6 · y6/y2)
1/2dW6. (29)

dy8 = {(q2/y2 −K81) · (y6 − y8)−K82 · y11 + δ8}dt. (30)

dy0 = (α9 + 1− β9 · y0)dt + (2γ9 · y0)
1/2dW9. (31)

y9 = 482.5/(32.6 + y0). (32)

dy11 = {q2/y2 · (y9 − y11) + K82 · (K11,1 − y11)−K81 · y8 + K11,2 + δ11}dt. (33)

5 Estimated parameters and initial values

Some of these parameters were estimated by Young and Beck (1974) from observations
taken over an extensive period on the River Cam, and some of these parameters refer to
the Henry’s law. The concentration of DO and BOD are followed by Harris’ estimation.

The set of estimated parameters and initial values are assumed as following:
{x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}
= {20.0centigrade; 1.8 · 105liter/hour; 5.5 · 105liter; 29.996040mg/l;

29.996040mg/l; 29.996040mg/l; 34.953805mg/l; 34.953805mg/l;
34.953805mg/l; 9.187857mg/l; 3.195776mg/l; 3.195776mg/l};

γi = 0.35/1.5; βi = 0.35; αi = xi,0 · βi − 1
K51 = 6.0 · 10−3/hour; Kb2 = 62.916849mg/l; K53 = 0.35;
K11,1 = 9.187857mg/l; K11,2 = 1.098548mg/l/day;
δ8 = 0.0 and δ11 = 0.0,
K82 = 0.3 · 1.02T−20/day, by Henry’s law,
K81 = 0.17 · 1.047T−20/day, by Henry’s law.

6 Numerical models and its algorithms

6.1 Various methods of the numerical solution of SDEs

a) Monte Carlo method. It is somewhat inefficient because it does not use the special
structure of these equations, specifically they are characterized by their drift and diffusion
coefficients.
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b) Finite state Markov Chains approach. It seems applicable only for low dimensional
problems on bounded domains [10].

c) Kalman Filters. Estimation theory in the form of linear and extended Kalman filters
have been used successfully in probabilistic water pollution models by several investigators
including Beck and Young (1976), Bowles and Grenney (1978), and Bowles and Beck
(1979). These models are useful for real time control and forecasting, but since they
require contemporaneous measurements on the river system, they are not applicable for
prediction of system performance under alternative control strategies for which it is not
possible to obtain measurements.

d) Discrete time numerical methods [11].

An applicable approach to solving SDEs seems to be the simulation of sample paths of
time discrete approximations. This is based on a finite discretization of the time interval
[0,T] under consideration and generates approximate values of the sample paths, step by
step, at the discretization times.

The simulated sample paths can then be analyzed by the usual statistical methods
to determine how good the approximation is and in what sense it is close to the exact
solution.

An advantage of considerable practical importance using this approach is that the
computational costs such as time and memory required increase only polynomially with
the dimension of the problem. Variance reduction methods allow a considerable decrease
in the required sample size [11].

6.2 Some schemes of the discrete time numerical methods

a) The Euler scheme (see Maruyama (1955)).
b) The Runge-Kutta schemes.
c) The Stratonovich-Taylor expansions schemes.
d) The Ito-Taylor expansions schemes.
Early simulation studies and theoretical investigations by Clements and Anderson

(1973), Wright (1974), Clark and Cameron (1980) and others showed that not all heuristic
discrete time approximations of an SDE converge in a useful sense to the solution process
as the maximum step size δ tends to zero.

In particular, it was found that one cannot simply use a deterministic numerical
method for ordinary differential equations, such as a higher order Runge-Kutta method
or Euler methods, which ignore the special properties of an SDE. (see appendix.)

In this paper, the Ito-Taylor expansions schemes would be applied.
As a sample of simulation of water pollution models, a 1.5 order Ito-Taylor expansion

scheme is applied, but it does not go on to discuss which method is the best one, such as
Stratonovich-Taylor scheme or Ito-Taylor-Runge-Kutta scheme.
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The notation “1.5 order” is just followed by the linear notation, for the nonlinear case,
the accurate convergence rate has not been proved.

In detail, refer to section 7.

7 The convergence of Numerical Solutions

In this section we consider numerical solutions for the following Stochastic Differential
equation based on Ito-Taylor expansions:

dXt = a(t,Xt)dt + b(t,Xt)dWt (34)

The equation is, here, interpreted as a stochastic integral equation

Xt = Xt0 +
∫ t

t0
a(s,Xs)ds +

∫ t

t0
b(s,Xs)dWs (35)

where the second integral is an Ito integral. The conditions for a(t,X), b(t,X) will be
stated later.

Let Y δ be a general time discrete approximation with maximum step size δ. We say
that Y δ converges strongly to X at time T if

lim
δ→0

E(|XT − Y δ|) = 0 (36)

We say Y δ converges strongly with order γ at time T if there exists a positive constant
C and δ0 such that

ε(δ) = E(|XT − Y δ|) ≤ Cδγ (37)

for each δ with 0 < δ < δ0.
For a multi-dimensional Wiener process W = (W 1, W 2, ...Wm), we define the mul-

tiple Wiener integrals by

I(j1,j2) =
∫ τn+1

τn

∫ τs2

τn

dW j1
s1

dW j2
s2

(38)

for j1, j2 ∈ {1, ..., m} with j1 6= j2, which cannot be expressed simply in terms of the
increments ∆W j1

n and ∆W j2
n of the corresponding Wiener process.

In the general multi-dimensional case with m = 1, 2, ... the k-th component of the
order 1.5 strong Taylor scheme takes the form:

Y k
n+1 = Y k

n + a∆ +
1

2
L0ak∆2 (39)

+
m∑

j=1

(bk,j∆W j + L0bk,jI(0,j)+ + LjakI(j,0)) (40)

+
m∑

j1,j2=1

(Lj1bk,j2I(j1,j2)) +
m∑

j1,j2,j3=1

(Lj1Lj2bk,j3I(j1,j2,j3)). (41)
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where, the operators:

L0 = ∂
∂t

+
∑d

k=1(a
k ∂

∂yk ) + 1
2

∑d
k,l=1

∑m
j=1 bk,jbl,j ∂2

∂yk∂yl

Lj =
∑d

k=1(b
k,j ∂

∂yk )

Here ,we also have multiple Ito integrals with respect to different components of the
Wiener process.

Let ξj, ζj,1, ..., ζj,p, ηj,1, ..., ηj,p, µj,p and φj,p be independent standard Gaussian random
variables. Then for j, j1, j2, j3 = 1, 2, ...,m and p = 1, 2, ... we have

I(j) = ∆W j =
√

∆ξj,

I(j,0) = 1
2
∆(
√

∆ξj + aj,0)

with aj,0 = −
√

2∆
π

∑p
r=1

1
r
ζj,r − 2

√
∆ρpµj,p

where ρp = 1
12
− 1

2π2

∑p
r=1

1
r2

I(0,j) = ∆W j∆− I(j,0),

I(j,j) = 1
2
{(∆W j)2 −∆}

Ip
(j1,j2) = 1

2
∆ξj1ξj2 − 1

2

√
∆(ξj1aj2,0 − ξj2aj1,0 + Ap

j1,j2∆

for j1 6= j2 where Ap
j1,j2 = 1

2π

∑p
r=1(

1
r
(ζj1,rηj2,r − ζj2,rηj1,r));

And we have E(|Ip
α − Iα|2) ≤ C ∆2

p
for the above approximations of the multiple Ito

ingtegrals.
We need to choose p so that p = p(∆) ≥ K

∆2 for an appropriate positive constant K
to ensure that the Ito-Taylor scheme (39) with these approximations of the multiple Ito
integrals really does have order 1.5 of strong convergence for is a autonomous equations.

The algorithm of simulation of our water pollution model does not present a I(j1,j2,j3)

term because its coefficients equal zero, so we skip it here.
( see [11] 350-357)

We apply the above numerical methods to our water polution models and prove the
strong convergence for them:

Theorem 7.1 Suppose that the sludge flow q0 and CBOD0 is bouded below,

q0 ≥ Q, CBOD0 ≥ C (42)

for some positive constant Q and C. Then our scheme of numerical methods converges
strongly to the solution of SDE with order 1.5.
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proof
The crucial point is to estimate the jump of random number. In our case, the critical
terms are

(2γ6 · cBOD0/V )1/2dW6, (2γ1 · q0)
1/2dW1

From the assumptions in the theorem, we note that the absolute values of the differentials
of the functions (2γ6 · cBOD0/V )1/2, (2γ1 · q0)

1/2 are bounded.
Therefore all the coefficients in our SDEs satisfy both the Lipshitz condition and the

linear growth bound:
|a(t, x)− a(t, y)| ≤ K|x− y|
|b(t, x)− b(t, y)| ≤ K|x− y|
|a(t, x)2| ≤ K2(1 + |x|2)
|b(t, x)2| ≤ K2(1 + |x|2)

Under these conditions we can conclude that our numerical solution converges strongly
to the solution of SDEs. For the order 1.5, see the section 10.4 in [11].

8 Simulation results

By 1.5 order Ito-Taylor expansions schemes, we summarize our simulation results as
follow:

1) The theory of SDEs is a beneficial tool for studying diffusion process and system
errors accounting. It can describe the physical relationships of different factors (e.g. BOD
gain, in figure 5 ), and can predict phenomenon on the environment by simulation and
statistical analysis (e.g. figure 6,7,8,).

2) By adding a mixing process to the input/output model, the three-steps model
divides the system into mixing process (stirring) and biochemical process, exploits the
information of pre-biochemical reaction on the system, so it increases the accuracy of
model representing the real physical relationships (It is based on the criterion of models:
the quantity of fluid mixing. M.B.Beck).

3). Figure 3 shows that the sample paths of the output pollutant concentrations
between the two models are almost identical, but figure 4 shows the sample paths of
the output BOD concentrations and the output DO concentrations in each model are
different. This means there are some potential different advantages for each model.

4) Figure 11, 12 and 13 show that the output DO concentration of the three-steps
model seems to be determined by the input DO concentration, namely it relates closely
to the temperature here (because the input DO concentration is assumed to be deter-
mined by temperature only), but Harris’ model shows that it is related to the input BOD
concentration.
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9 Discussion

9.1 The relationship between the three-steps model and SDEs

The primary significances of the three-steps model contrasting SDEs and diffusion
processes are:

1) It suits the spirit of the Ito process which represents general diffusion processes as
transformations of a Brownian motion (Michael Turelli. (1976)), either in discrete time
cases or continuous time cases;

2) Roughly speaking, it suits the idea that a sample of a stochastic process is con-
tinuous/deterministic in a sufficient small time interval dt, so a stable state need to be
assumed as the basic starting point for modeling in the time interval dt;

3) It makes clear what a physical diffusion process means, since the diffusion process
it represents depends on which interpretation is employed.

4) It can single out the different diffusion processes by different Wiener processes.
On the other hand, a Wiener process in SDEs can also be used to account for the

system errors only, that means we can lump the different diffusion processes/noises all
together as one noise term, rather than distinguish the more useful information concerning
the effects of environmental stochasticity.

9.2 Limits of the three-steps model

Determining the degree and structure of the interaction between variables and model
components is difficult to quantify (see section 1, or (R.H.McCuen)). A comparison
of sensitivity estimates may provide some indications of the degree of interaction, but
determining the quality of a model must often be based on many other theoretical con-
siderations.

a) Though we show some advantages of the three-steps model, it must be verified by
the observed data. It is an important step but is lacking at present in this paper.

b) It looks like the three-steps model is logically completed, but the equation of de-
scribing mixing process and the equation of describing reaction process are related to
each other. From a mathematical sense, they are not independent. Therefore theoreti-
cally speaking, at this time, some of the mathematical principles would be in conflict with
the new model in reality. On the other hand, it can be performed by digital computer
method. (e.g. the value of cDO1(= cDO2) and cDO3 are exchanged, step by step, just like
a cycle during programming), this due to the advantage of digital techniques.

c) Because the equations are non-linear SDEs, usually, we cannot obtain the explicit
solutions of SDEs, but we can get a numerical solution. In a non-linear system, how to
determine the confidence interval theoretically becomes a problem.

9.3 On improving and calibration of the three-steps model

There are some techniques for improving the three-steps model and calibrating the
three steps model.
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1) If the noise components are state-correlated or time-series-correlated, we can deal
with them by using another mathematic technique.

a) In general, the different factors (e.g. the influent feed-rate and substrate concen-
tration ) are related. They are reflected in the model (e.g. equation (1) and (3) ) by the
correlated Wiener processes (e.g. W1 and W3). We can deal with them by mathematical
techniques ( see Di Toro and Van Straten (1979), or Harris (1975)).

b) If the noises are time-series-correlated, (e.g. W1(ti) and W3(tj) are not iid. (inde-
pendent, identically distributed) ), then the solutions would be very complex, such as Ito’s
solution, Stratonovich’s solution, or neither of them. (see T.E.Unny (1984) or Michael
Turelli (1976)).

2) A more general model can be presented by adding some noise terms to the reacting
equations respectively, e.g. x5 or x8 or x11, to account for poor modeling as well as
additive disturbances (e.g. effects of sunlight on photosynthesis of algae or wind gusts to
account for the turbulent reaction process). It is possible to improve the model so that it
can become a more reasonable mathematical approximation of the physical biochemical
exchanges occurring in the river system.

3) This input/mixing/output structure of the model can be applied to other fields of
study, such as a polluted lake, or sea, etc. It is a form of the continuously stirred tank
reactors (CSTR).

4) If we relate the ideas of the Ito integral method and Stratonovich integral method
with Harris’ model and the three-steps model, we find that Harris’ model and the three-
steps model correspond to the ideas of the Ito integral and the Stratonovich integral
respectively, because in Harris’ model, the value of reaction concentrations are evaluated
at instant time tn in [tn, tn+1], but in the three-steps model, they are accounted for by the
average concentrations on time interval [tn, tn+1] and space volume V . In this view, we
cannot say which model is better.

10 Conclusion

In this study, we have investigated two water pollution models based on SDEs, (the
input/output model (Harris’ model) and the input/mixing/output model (the three-steps
model)).

The results obtained in this study are summarized as following:
1) The theory of SDE is a beneficial tool for studying water pollution. Based on

the analysis of computer simulation of SDEs, we can obtain predictions on phenomenon,
and the relationship between different factors considered. From the predictions and the
relationships, we can decide how to control and plan political strategies for self-purification
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river systems.

2) Comparing the ODEs (ordinary differential equations) dynamic model, an addi-
tional term of the Wiener process in the SDEs model can be used to account for the
system errors only, or to represent the diffusion process.

3) The three-steps model is improved from the input/output model by adding a mixing
(stirring) process. It exploits the information of pre-biochemical reaction on the system.
From the model aspect, it represents the system more efficiently than the input/output
model, but it is more difficult to apply. Respectively, they have some potential different
advantages .

4) If the term of prediction is short, e.g. 5 days, both of the models are proper to
predict the phenomena; if the term of prediction is a little longer, e.g. 6-10 days, the three-
steps model has an advantage over the input/output model; but if the term of prediction
is long, both of the models are somewhat improper to predict the future, at the time, the
three-steps model loses the advantage of predicting BOD.

5) In the three-steps model, output DO concentration seems to be determined by the
input DO concentration, but in the input/output model, it seems to be determined by
the input BOD concentration.

Further work: The determination of the quality of a model must be based on many
other theoretical considerations, e.g. it must be verified by the observed data; in a non-
linear system; the methods of how to determine a confidence interval theoretically must
be developed; the ideas of how to evaluate the concentrations of material reaction in the
input/output model and the three-steps model, are similar to the Ito integral method and
Stratonovich integral method respectively. What are the relationships between them?
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Figure 3: paths of substrate concentrations
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Figure 4: paths of BOD and DO concentrations

Figure 5: BOD gain; unit = E(c
(2)
s0 )/(β3E(cs0))
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Figure 6: Distributions of substrate concentrations

Figure 7: Distributions of BOD concentrations
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Figure 8: Distributions of DO concentrations

Figure 9: Paths of DO concentrations go down to zero
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Figure 10: Distribution of DO concentrations including negative samples

Figure 11: paths of BOD concentrations
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Figure 12: paths of DO concentrations

Figure 13: paths of BOD and DO concentrations
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