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Abstract

This note tries to connect the stochastic mean-square stability [Saito and Mitsui,
SIAM J. Numer.Anal., 33(1996), pp. 2254-2267] and the asymptotic stability [D.J.
Higham, STAM J. Numer. Anal., 38(2000), pp. 753-769]. SAITO and MITSUI gener-
alizes the deterministic A-stability for a stochastic differential equation test problem
with multiplicative noise. For the test equation, we know that the asymptotic stability
in the mean-square sense implies the stochastic asymptotic stability in large. We will
prove the same property for numerical schemes.
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1 Introduction

We consider the scalar stochastic initial value problem (SIVP) for the It6 ordinary differential
equations (SODE) given by :

dX(t) = a(t, X (t)dt + b(t, X(t))dW(t) for 0<t<T and X(t) €R, (1)
where functions are defined by
a:[0,4+00) x R—R, b:[0,400) x R—R and X(0)= X,

and W (t) is the 1-dimensional Brownian motion. Let F; denote the increasing family of
o-algebras (filtration) generated by the Brownian motion W (s),s < t. Details about this
stochastic object and corresponding calculus can be found in [1, 4].

We consider an Ito equation (1) with a steady solution X; = 0. This means that a(t,0) =
b(t,0) = 0 holds. X*9(¢) means that X%(¢y) = 0.

The following definitions are due to HASMINSKI:
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Definition 1 The steady state solution X"O(t) = 0 of (1) is said to be stochastically
stable if for any e > 0 and ty > 0

lim P(sup || X™™(t) ||>¢€) = 0.

QCQ—>0 tZtO

Definition 2 The steady state solution X'O(t) = 0 of (1) is said to be stochastically
asymptotically stable if, in addition to being stochastically stable,
; ; to,xo — —
Jim P( lim || X™*(2) ||=0) = 1.

Definition 3 The steady state solution X"O(t) = 0 of (1) is said to be stochastically
asymptotically stable in the large, if moreover to the above two,

P( lim || X' () ||=0) = 1. for all x,.

t——+o0
For the general SODE (1) KLOEDEN and PLATEN (cf. [5]) gave the following definition:

Definition 4 The steady state solution X*9(t) = 0 of (1) is stable in the p-th mean if

for
Ve > 0 Vity >0, 35 = 0(tg,€) >0

such that
E | Xtoro(t) |[P< e

for allt >ty and || zo ||< 9.

Definition 5 The steady state solution X"°(t) = 0 of (1) is asymptotically stable in
the p-th mean if in addititon, there exists a do = d(to) such that

tE-IElooE | X% (t) [[P= 0 for all || xo ||< do.

The most frequently used case p = 2 is called the mean-square case and in the sequel we
focus our investigation on the mean-square stability.

We suppose that the equation (1) has a unique, bounded strong solution X (t) in the
mean-square sense.

Usual deterministic time discretization of a bounded time-interval [0,7], T' > 0 is of the
form 0=ty <t; <...<ty =T, where N is a natural number. We suppose that t, = 0 and
adopt an equidistant discretization with the step size A =t,41 —t,, n=0,1,..., N — 1.

In the sequel Y,, always denotes the approximation of X(¢,) using a given numerical
scheme with the step size A.



2 Mean-square and asymptotic stabilities for the test
equation

Consider the one-dimensional stochastic test equation
dX(t) = AX(t)dt + uX(t)dW () (t>0), X(0)=ux, (2)

where A and @ are complex numbers and we assume that x( is a non zero deterministic value.
The exact solution of (2) is

2
X(0) = (0= e+ W (D)

which is sometimes called geometric Brownian motion. It has the second moment
EIX(t)]* = exp((2R(A) + |ul*)t)]zol*.

For this test equation, the stationary solution X (¢) = 0 is stochastically asymptotically

stable in large if the inequality

1

holds. SA1TO-MITSUI [6] showed that the zero solution of equation (2) is asymptotically
mean-square stable if and only if

2R(\) + ul* <0,

as we can see the form of the second moment of X (¢).

Note that since the inequality R(2\ — p?) < 2R(A) + |p|? is always valid, the asymptotic
stability in the mean-square sense implies the stochastic asymptotic stability in large.

As considered in [2] and [6] the analytical theory is not applicable to numerical schemes
because it is impossible to carry out a numerical scheme until all the sample paths (2)
diminish to zero if R(\) > 0 and R(A — £42) < 0.

Generally, in the vector case, when we apply a numerical scheme (Y;,) to the equation
(2) and take the mean-square norm, we obtain a one-step difference equation of the form

E || Yoi1 |I?= RAK)E | Y, ||, (3)

where A = AX and k = —p?/\. B
SAITO and MITSUI in their work [6] called the function R(A, k) as the stability function
of the scheme. In this case E || Y, [|*— 0 as n — +oo0 iff

IR(A, k)| < 1.

They gave in their work [6] the following definition:



Definition 6 The scheme is said to be MS-stable for those values of A and k satisfying
|R(AK)| < 1. (4)

The set R given by o _
R ={(Ak): |[R(A k)| <1}

1s analogously called the domain of M S-stability of the scheme.

HicuaM [3] introduces the new concept of stability.

Definition 7 When a numerical scheme is applied to the stohastically asymptotically sta-
ble in large as equation (2) and generating the sequence (Y,,), it is said to be numerically
asymptotically stable in large (or simply, asymptotically stable) if

lim | ¥, =0 (5)

n—-+00
with probability 1.
We can establish a relationship between two stability concepts as follows.

Theorem 1 The MS-stable schemes satisfying (4) are numerically asymptotically stable in
large.

In the proof of Theorem we will use the statement of the following Lemma.

Lemma 1
lirf | Y. |=0 (a.s)
uf
lim PUZ {|| Y [|>€})=0 forall €>0. (6)

n—-+00
Proof of Lemma. We prove this statement by defining for n € N and € > 0 the events
An(e) = {[l Y [[= €}

and o
A(e) = limA,(e) = NI UL Agle).
We notice that since U{>° Ay () | A(e) asn — +oo, the equality P(A(¢)) = lirf P(Uf2 Ar(e))
holds.
Now we define an event

D ={w e Q| Y, || does not converge to 0 as n — +oo}.

Then

1
D = U5>0A(6) = U;,tlo:olA (E) y

because of A(e1) C A(ez) for €1 > €.



The above equalities imply that hm | Y., ||= 0 with probability 1 that is equivalent to
P(D) = 0. It holds only if and only 1f P(A( )) =0 for all € > 0, which is equivalent to

lim P(U, {|| Ys [|>€}) =0 forall e>0. (7)

n—-+00

Using this result we can prove the statement of the Theorem.

Proof of Theorem.
We estimate the right-hand side of the inequality (7)

o N “E|v|?
P Yil=e}) < > P(IY Hze)ng
l=n

OOR(AR)EHY()W EHYo
< > = ZR
l=n

tends to 0 as n — 400 due to the condition (4) for all € > 0. Now we attain

lim | Y, |=0 (as).

By this we have the same conclusion as for exact solution: all MS-stable schemes are
asymptotically stable in large.
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