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Abstract

This note tries to connect the stochastic mean-square stability [Saito and Mitsui,
SIAM J. Numer.Anal., 33(1996), pp. 2254-2267] and the asymptotic stability [D.J.
Higham, SIAM J. Numer. Anal., 38(2000), pp. 753-769]. Saito and Mitsui gener-
alizes the deterministic A-stability for a stochastic differential equation test problem
with multiplicative noise. For the test equation, we know that the asymptotic stability
in the mean-square sense implies the stochastic asymptotic stability in large. We will
prove the same property for numerical schemes.
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1 Introduction

We consider the scalar stochastic initial value problem (SIVP) for the Itô ordinary differential
equations (SODE) given by :

dX(t) = a(t, X(t))dt + b(t, X(t))dW (t) for 0 ≤ t ≤ T and X(t) ∈ R, (1)

where functions are defined by

a : [0, +∞) × R → R, b : [0, +∞)× R → R and X(0) = X0,

and W (t) is the 1-dimensional Brownian motion. Let Ft denote the increasing family of
σ-algebras (filtration) generated by the Brownian motion W (s), s ≤ t. Details about this
stochastic object and corresponding calculus can be found in [1, 4].

We consider an Itô equation (1) with a steady solution Xt ≡ 0. This means that a(t, 0) =
b(t, 0) = 0 holds. Xt0,0(t) means that Xt0,0(t0) = 0.

The following definitions are due to Hasminski:
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Definition 1 The steady state solution Xt0,0(t) ≡ 0 of (1) is said to be stochastically
stable if for any ε > 0 and t0 ≥ 0

lim
x0→0

P (sup
t≥t0

‖ Xt0,x0(t) ‖≥ ε) = 0.

Definition 2 The steady state solution Xt0,0(t) ≡ 0 of (1) is said to be stochastically
asymptotically stable if, in addition to being stochastically stable,

lim
x0→0

P ( lim
t→+∞

‖ Xt0,x0(t) ‖= 0) = 1.

Definition 3 The steady state solution Xt0,0(t) ≡ 0 of (1) is said to be stochastically
asymptotically stable in the large, if moreover to the above two,

P ( lim
t→+∞

‖ Xt0,x0(t) ‖= 0) = 1. for all x0.

For the general SODE (1) Kloeden and Platen (cf. [5]) gave the following definition:

Definition 4 The steady state solution Xt0,0(t) ≡ 0 of (1) is stable in the p-th mean if
for

∀ε > 0 ∀t0 > 0, ∃δ = δ(t0, ε) > 0

such that
E ‖ Xt0,x0(t) ‖p< ε

for all t ≥ t0 and ‖ x0 ‖< δ.

Definition 5 The steady state solution Xt0,0(t) ≡ 0 of (1) is asymptotically stable in
the p-th mean if in addititon, there exists a δ0 = δ(t0) such that

lim
t→+∞

E ‖ Xt0,x0(t) ‖p= 0 for all ‖ x0 ‖< δ0.

The most frequently used case p = 2 is called the mean-square case and in the sequel we
focus our investigation on the mean-square stability.

We suppose that the equation (1) has a unique, bounded strong solution X(t) in the
mean-square sense.

Usual deterministic time discretization of a bounded time-interval [0, T ], T > 0 is of the
form 0 = t0 < t1 < . . . < tN = T, where N is a natural number. We suppose that t0 = 0 and
adopt an equidistant discretization with the step size ∆ = tn+1 − tn, n = 0, 1, . . . , N − 1.

In the sequel Yn always denotes the approximation of X(tn) using a given numerical
scheme with the step size ∆.
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2 Mean-square and asymptotic stabilities for the test

equation

Consider the one-dimensional stochastic test equation

dX(t) = λX(t)dt + µX(t)dW (t) (t ≥ 0), X(0) = x0, (2)

where λ and µ are complex numbers and we assume that x0 is a non zero deterministic value.
The exact solution of (2) is

X(t) = exp

(
(λ − µ2

2
)t + µW (t)

)
x0,

which is sometimes called geometric Brownian motion. It has the second moment

E|X(t)|2 = exp((2�(λ) + |µ|2)t)|x0|2.

For this test equation, the stationary solution X(t) ≡ 0 is stochastically asymptotically
stable in large if the inequality

�(λ − 1

2
µ2) < 0

holds. Saito-Mitsui [6] showed that the zero solution of equation (2) is asymptotically
mean-square stable if and only if

2�(λ) + |µ|2 < 0,

as we can see the form of the second moment of X(t).
Note that since the inequality �(2λ − µ2) ≤ 2�(λ) + |µ|2 is always valid, the asymptotic

stability in the mean-square sense implies the stochastic asymptotic stability in large.
As considered in [2] and [6] the analytical theory is not applicable to numerical schemes

because it is impossible to carry out a numerical scheme until all the sample paths (2)
diminish to zero if �(λ) > 0 and �(λ − 1

2
µ2) < 0.

Generally, in the vector case, when we apply a numerical scheme (Yn) to the equation
(2) and take the mean-square norm, we obtain a one-step difference equation of the form

E ‖ Yn+1 ‖2= R(∆, k)E ‖ Yn ‖2, (3)

where ∆ = ∆λ and k = −µ2/λ.
Saito and Mitsui in their work [6] called the function R(∆, k) as the stability function

of the scheme. In this case E ‖ Yn ‖2→ 0 as n → +∞ iff

|R(∆, k)| < 1.

They gave in their work [6] the following definition:
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Definition 6 The scheme is said to be MS-stable for those values of ∆ and k satisfying

|R(∆, k)| < 1. (4)

The set R given by
R = {(∆, k) : |R(∆, k)| < 1}

is analogously called the domain of MS-stability of the scheme.

Higham [3] introduces the new concept of stability.

Definition 7 When a numerical scheme is applied to the stohastically asymptotically sta-
ble in large as equation (2) and generating the sequence (Yn), it is said to be numerically
asymptotically stable in large (or simply, asymptotically stable) if

lim
n→+∞

‖ Yn ‖= 0 (5)

with probability 1.

We can establish a relationship between two stability concepts as follows.

Theorem 1 The MS-stable schemes satisfying (4) are numerically asymptotically stable in
large.

In the proof of Theorem we will use the statement of the following Lemma.

Lemma 1
lim

n→+∞
‖ Yn ‖= 0 (a.s)

iff
lim

n→+∞
P (∪∞

k=n{‖ Yk ‖≥ ε}) = 0 for all ε > 0. (6)

Proof of Lemma. We prove this statement by defining for n ∈ N and ε > 0 the events

An(ε) = {‖ Yn ‖≥ ε}
and

A(ε) = lim
n

An(ε) = ∩+∞
n=1 ∪+∞

k=n Ak(ε).

We notice that since ∪+∞
k=nAk(ε) ↓ A(ε) as n → +∞, the equality P (A(ε)) = lim

n→+∞
P (∪+∞

k=nAk(ε))

holds.
Now we define an event

D = {ω ∈ Ω; ‖ Yn ‖ does not converge to 0 as n → +∞}.
Then

D = ∪ε>0A(ε) = ∪+∞
m=1A

(
1

m

)
,

because of A(ε1) ⊂ A(ε2) for ε1 > ε2.
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The above equalities imply that lim
n→+∞

‖ Yn ‖= 0 with probability 1 that is equivalent to

P (D) = 0. It holds only if and only if P (A(ε)) = 0 for all ε > 0 , which is equivalent to

lim
n→+∞

P (∪∞
k=n{‖ Yk ‖≥ ε}) = 0 for all ε > 0. (7)

Using this result we can prove the statement of the Theorem.

Proof of Theorem.
We estimate the right-hand side of the inequality (7)

P (∪∞
l=n{‖ Yl ‖≥ ε}) ≤

∞∑
l=n

P (‖ Yl ‖≥ ε) ≤
∞∑

l=n

E ‖ Yl ‖2

ε2

≤
∞∑

l=n

R(∆, k)lE ‖ Y0 ‖2

ε2
≤ E ‖ Y0 ‖2

ε2

∞∑
l=n

R(∆, k)l

tends to 0 as n → +∞ due to the condition (4) for all ε > 0. Now we attain

lim
n→∞

‖ Yn ‖= 0 (a.s).

By this we have the same conclusion as for exact solution: all MS-stable schemes are
asymptotically stable in large.
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