DISTRIBUTION RELATION FOR BERNOULLI POLYNOMIALS ATTACHED TO FORMAL GROUP

JUNYA SATOH

Abstract. We extend a well-known distribution relation for ordinary Bernoulli polynomials to that of Bernoulli polynomials attached to formal group.

Let q be an indeterminate and let \mathfrak{o} be the formal power series ring in $q-1$ over some \mathbb{Q}-algebra. Furthermore let $\mathfrak{F}(X, Y)$ be a 1-dimensional commutative formal group defined over \mathfrak{o} and let $\mathfrak{f}(X)$ be an isomorphism from the additive formal group $X+Y$ to $\mathfrak{F}(X, Y)$. We note that there exists a unique isomorphism $\mathfrak{f}_{\mathfrak{F}}(X)$ from $X+Y$ to $\mathfrak{F}(X, Y)$ defined over \mathfrak{o} such that $\mathfrak{f}_{\mathfrak{F}}^{\prime}(0)=1$. And $\mathfrak{f}(X)$ is equal to $\mathfrak{f}_{\mathfrak{F}}(c X)$ for some invertible element $c \in \mathfrak{o}^{\times}$. Conversely for any $c \in \mathfrak{o}^{\times}, \mathfrak{f}_{\mathfrak{F}}(c X)$ is an isomorphism from $X+Y$ to $\mathfrak{F}(X, Y)$. We note that we also denote $\mathfrak{f}_{\mathfrak{F}}(c X)$ by $[X]_{\mathfrak{F}, c}$. Throughout this paper we assume that

Assumption 1.

$$
\operatorname{ord}_{q-1} \mathfrak{f}_{\mathfrak{F}}^{(n)}(0) \geq n-1 \quad \text { for all } n \geq 1
$$

where $\mathfrak{f}_{\mathfrak{F}}^{(n)}$ means the n-th derivative of $\mathfrak{f}_{\mathfrak{F}}$.
We note that by this assumption $\mathfrak{F}_{n}(A, B)$ (see Definition 1 below) and $\mathfrak{f}(a)$ are convergent in \mathfrak{o} for any $A, B \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$ as formal power series (see [6, Remark 3]).

Definition 1. For each non-negative integer n we denote the expansion of $\mathfrak{F}(X, Y)^{n}$ by

$$
\mathfrak{F}(X, Y)^{n}=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} X^{i} Y^{j}
$$

and we set

$$
\mathfrak{F}_{n}(A, B)=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} a_{i} b_{j}
$$

for any power series $A=\sum_{n \geq 0} a_{n} \frac{X^{n}}{n!}$ and $B=\sum_{n \geq 0} b_{n} \frac{X^{n}}{n!}$ in $\mathfrak{o}[[X]]$. And we define the $*_{\mathfrak{F}}$-product by

$$
A *_{\mathfrak{F}} B=\sum_{n \geq 0} \mathfrak{F}_{n}(A, B) \frac{X^{n}}{n!}
$$

We note that we also denote $\mathfrak{F}_{n}(A, B)$ by $\left(a+_{\mathfrak{F}} b\right)^{n}$.
We can prove $\left(\mathfrak{o}[[X]],+, *_{\mathfrak{F}}\right)$ is an \mathfrak{o}-algebra (see $[6$, Proposition 1]). Next we extend the following map:

$$
X^{n} \mapsto c^{n} \underbrace{X *_{\mathfrak{F}} \cdots *_{\mathfrak{F}} X}_{n \text { times }}
$$

\mathfrak{o}-linearly. Hence we can get a natural homomorphism from $(\mathfrak{o}[[X]],+, \cdot)$ to $(\mathfrak{o}[[X]],+, * \mathfrak{F})$. We denote the image of $A \in \mathfrak{o}[[X]]$ under this homomorphism by $A_{\mathfrak{F}, c}$. And we define an analogue of power series A attached to \mathfrak{F} and c by $A_{\mathfrak{F}, c}$. Next we define Bernoulli numbers $\beta_{n}(\mathfrak{F}, c)$ and Bernoulli polynomials $\beta_{n}(t ; \mathfrak{F}, c)$ attached to \mathfrak{F} and c as follows:

Definition 2. For each non-negative integer n we define the n-th Bernoulli number $\beta_{n}(\mathfrak{F}, c)$ and Bernoulli polynomial $\beta_{n}(t ; \mathfrak{F}, c)$ attached to $\mathfrak{F}(X, Y) \in \mathfrak{o}[[X, Y]]$ and $c \in \mathfrak{o}^{\times}$by the coefficient of $\frac{X^{n}}{n!}$ in $\left(\frac{X}{e^{X}-1}\right)_{\mathfrak{F}, c}$ and that of $\frac{X^{n}}{n!}$ in $\left(\frac{X e^{t X}}{e^{X}-1}\right)_{\mathfrak{F}, c}$ respectively.

We note that $\beta_{n}(0 ; \mathfrak{F}, c)=\beta_{n}(\mathfrak{F}, c)$. And because of

$$
\begin{aligned}
\left(\frac{X e^{t X}}{e^{X}-1}\right)_{\mathfrak{F}, c} & =\left(\frac{X}{e^{X}-1}\right)_{\mathfrak{F}, c} *_{\mathfrak{F}}\left(e^{t X}\right)_{\mathfrak{F}, c} \\
& =\left(\frac{X}{e^{X}-1}\right)_{\mathfrak{F}, c} *_{\mathfrak{F}} e^{[t]_{\mathfrak{F}, c} X} \\
& =\sum_{n \geq 0} \beta_{n}(\mathfrak{F}, c) \frac{X^{n}}{n!} *_{\mathfrak{F}} \sum_{n \geq 0}[t]_{\mathfrak{F}, c}^{n} \frac{X^{n}}{n!}
\end{aligned}
$$

we can denote $\beta_{n}(t ; \mathfrak{F}, c)$ by $\left(\beta(\mathfrak{F}, c)+_{\mathfrak{F}}[t]_{\mathfrak{F}}\right)^{n}$.
To state our main result, we need to define a new formal group.
Definition 3. For any $a \in \mathfrak{o}^{\times}$we define new 1-dimensional commutative formal group over \mathfrak{o} by

$$
\mathfrak{F}_{(a)}(X, Y)=\frac{\mathfrak{F}\left([a]_{\mathfrak{F}, c} X,[a]_{\mathfrak{F}, c} Y\right)}{[a]_{\mathfrak{F}, c}}
$$

Let $[X]_{\mathfrak{F}_{(a)}, d}$ be an isomorphism from the additive formal group $X+Y$ to $\mathfrak{F}_{(a)}(X, Y)$ for $d \in \mathfrak{o}^{\times}$.

Lemma 1. If $d=\frac{a}{[a]_{\mathfrak{F}, c}} c$, then we have

$$
[X]_{\mathfrak{F}}^{(a), d} ⿵=\frac{[a X]_{\mathfrak{F}, c}}{[a]_{\mathfrak{F}, c}} .
$$

Proof. If we put $\mathfrak{g}=\frac{[a X]_{\mathfrak{F}, c}}{[a]_{\mathfrak{F}, c}}$, then \mathfrak{g} is a power series in $\mathfrak{o}[[X]]$ and $\mathfrak{g}(0)=0, \mathfrak{g}^{\prime}(0)=$ d. Hence it is sufficient to prove that

$$
\mathfrak{g}\left(\mathfrak{g}^{-1}(X)+\mathfrak{g}^{-1}(Y)\right)=\mathfrak{F}_{(a)}(X, Y)
$$

Now we again note $[X]_{\mathfrak{F}, c}=\mathfrak{f}_{\mathfrak{F}}(c X)$. Because of

$$
\mathfrak{g}^{-1}(X)=\frac{\mathfrak{f}_{\mathfrak{F}}^{-1}\left(\mathfrak{f}_{\mathfrak{F}}(a c) X\right)}{a c} \quad \text { and } \quad \mathfrak{F}(X, Y)=\mathfrak{f}_{\mathfrak{F}}\left(\mathfrak{f}_{\mathfrak{F}}^{-1}(X)+\mathfrak{f}_{\mathfrak{F}}^{-1}(Y)\right)
$$

we have

$$
\begin{aligned}
\mathfrak{g}\left(\mathfrak{g}^{-1}(X)+\mathfrak{g}^{-1}(Y)\right) & =\frac{\mathfrak{f}_{\mathfrak{F}}\left(a c\left(\frac{\mathfrak{f}_{\mathfrak{F}}^{-1}\left(\mathfrak{f}_{\mathfrak{F}}(a c) X\right)}{a c}+\frac{\mathfrak{f}_{\mathfrak{F}}^{-1}\left(\mathfrak{f}_{\mathfrak{F}}(a c) Y\right)}{a c}\right)\right)}{\mathfrak{f}_{\mathfrak{F}}(a c)} \\
& =\frac{\mathfrak{f}_{\mathfrak{F}}\left(\mathfrak{f}_{\mathfrak{F}}^{-1}\left(\mathfrak{f}_{\mathfrak{F}}(a c) X\right)+\mathfrak{f}_{\mathfrak{F}}^{-1}\left(\mathfrak{f}_{\mathfrak{F}}(a c) Y\right)\right.}{\mathfrak{f}_{\mathfrak{F}}(a c)} \\
& =\frac{\mathfrak{F}\left([a]_{\mathfrak{F}, c} X,[a]_{\mathfrak{F}, c} Y\right)}{[a]_{\mathfrak{F}, c}} \\
& =\mathfrak{F}_{(a)}(X, Y) .
\end{aligned}
$$

This completes the proof of Lemma 1

Our main result of this paper is as follows:
Theorem 1. For each non-negative integer n and positive integer m we have

$$
\beta_{n}(t ; \mathfrak{F}, c)=\frac{[m]_{\mathfrak{F}, c}^{n}}{m} \sum_{l=0}^{m-1} \beta_{n}\left(\frac{t+l}{m} ; \mathfrak{F}_{(m)}, d\right)
$$

where $d=\frac{m}{[m]_{\mathfrak{F}, c}} c$
The distribution relation for the ordinary Bernoulli polynomials $B_{n}(t)$ is

$$
B_{n}(t)=m^{n-1} \sum_{l=0}^{m-1} B_{n}\left(\frac{t+l}{m}\right)
$$

By considering the generating function of $B_{n}(t)$, the distribution relation is equivalent to

$$
\frac{X e^{t X}}{e^{X}-1}=\frac{1}{m} \sum_{l=0}^{m-1} \frac{m X e^{\frac{t+l}{m} m X}}{e^{m X}-1}
$$

and this is a trivial equality. Hence if we apply our homomorphism to the above equality, we can get

$$
\begin{equation*}
\left(\frac{X e^{t X}}{e^{X}-1}\right)_{\mathfrak{F}, c}=\frac{1}{m} \sum_{l=0}^{m-1}\left(\frac{m X e^{\frac{t+l}{m} m X}}{e^{m X}-1}\right)_{\mathfrak{F}, c} \tag{1}
\end{equation*}
$$

However in general it is not clear that the relationship of $A(X)_{\mathfrak{F}, c}$ and $A(a X)_{\mathfrak{F}, c}$ for $A \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$. Hence we provide several lemmas.
Lemma 2. For any $A, B \in \mathfrak{o}[[X]]$ we have

$$
\begin{equation*}
A\left([a]_{\mathfrak{F}, c} X\right) *_{\mathfrak{F}} B\left([a]_{\mathfrak{F}, c} X\right)=\left(A *_{\mathfrak{F}_{(a)}} B\right)\left([a]_{\mathfrak{F}, c} X\right) \tag{2}
\end{equation*}
$$

Proof. We put $A=\sum_{n \geq 0} a_{n} \frac{X^{n}}{n!}$ and $B=\sum_{n \geq 0} b_{n} \frac{X^{n}}{n!}$. By the definition of $*_{\mathfrak{F}}$-product, the left hand side of (2) is equal to

$$
\begin{aligned}
A\left([a]_{\mathfrak{F}, c} X\right) *_{\mathfrak{F}} B\left([a]_{\mathfrak{F}, c} X\right) & =\sum_{n \geq 0} \mathfrak{F}_{n}\left(A\left([a]_{\mathfrak{F}, c} X\right), B\left([a]_{\mathfrak{F}, c} X\right)\right) \frac{X^{n}}{n!} \\
& =\sum_{n \geq 0} \sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}}[a]_{\mathfrak{F}, c}^{i+j} a_{i} b_{j} \frac{X^{n}}{n!}
\end{aligned}
$$

On the other hand the right hand side of (2) is equal to

$$
\begin{aligned}
\left(A *_{\mathfrak{F}_{(a)}} B\right)\left([a]_{\mathfrak{F}, c} X\right) & =\sum_{n \geq 0} \mathfrak{F}_{(a) n}(A, B)[a]_{\mathfrak{F}, c}^{n} \frac{X^{n}}{n!} \\
& =\sum_{n \geq 0} \sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}_{(a)}} a_{i} b_{j}[a]_{\mathfrak{F}, c}^{n} \frac{X^{n}}{n!} .
\end{aligned}
$$

Now by the definition of $\mathfrak{F}_{(a)}$ and $\binom{n}{i, j}_{\mathfrak{F}_{(a)}}$, we have

$$
\begin{aligned}
\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}_{(a)}} X^{i} Y^{j} & =\mathfrak{F}_{(a)}(X, Y)^{n} \\
& =\frac{\mathfrak{F}\left([a]_{\mathfrak{F}, c} X,[a]_{\mathfrak{F}, c} Y\right)^{n}}{[a]_{\mathfrak{F}, c}^{n}} \\
& =\frac{1}{[a]_{\mathfrak{F}, c}^{n}} \sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}}[a]_{\mathfrak{F}, c}^{i+j} X^{i} Y^{j}
\end{aligned}
$$

Hence we have

$$
\binom{n}{i, j}_{\mathfrak{F}}[a]_{\mathfrak{F}, c}^{i+j}=\binom{n}{i, j}_{\mathfrak{F}_{(a)}}[a]_{\mathfrak{F}, c}^{n} .
$$

This completes the proof of Lemma 2.
Lemma 3. Let $d=\frac{a}{[a]_{\mathfrak{F}, c}} c$. For any $a \in \mathfrak{o}$ and $A \in \mathfrak{o}[[X]]$ we have

$$
A(a X)_{\mathfrak{F}, c}=A_{\mathfrak{F}_{(a)}, d}\left([a]_{\mathfrak{F}, c} X\right) .
$$

Proof. It is sufficient to prove for $A=X^{n}$. By Lemma 2 and the mathematical induction, we have

$$
\underbrace{[a]_{\mathfrak{F}, c} X *_{\mathfrak{F}} \cdots *_{\mathfrak{F}}[a]_{\mathfrak{F}, c} X}_{n \text { times }}=\underbrace{X *_{\mathfrak{F}_{(a)}} \cdots *_{\mathfrak{F}_{(a)}} X}_{n \text { times }}\left([a]_{\mathfrak{F}, c} X\right) .
$$

This means

$$
(a X)_{\mathfrak{F}, c}^{n}=\left(X^{n}\right)_{\mathfrak{F}_{(a)}, d}\left([a]_{\mathfrak{F}, c}(X)\right)
$$

and completes the proof of Lemma 3.
Now we return to the proof of theorem. Let $B(t ; X)$ be the generating function of Bernoulli polynomials, i.e.,

$$
B(t ; X)=\frac{X e^{t X}}{e^{X}-1}
$$

By (1) and Lemma 3 we have

$$
\begin{aligned}
B_{\mathfrak{F}, c}(t ; X) & =\frac{1}{m} \sum_{l=0}^{m-1}\left(\frac{m X e^{\frac{t+l}{m} m X}}{e^{m X}-1}\right)_{\mathfrak{F}, c} \\
& =\frac{1}{m} \sum_{l=0}^{m-1} B\left(\frac{t+l}{m} ; m X\right)_{\mathfrak{F}, c} \\
& =\frac{1}{m} \sum_{l=0}^{m-1} B_{\mathfrak{F}_{(m)}, d}\left(\frac{t+l}{m} ;[m]_{\mathfrak{F}, c} X\right) .
\end{aligned}
$$

By comparing the coefficient of $\frac{X^{n}}{n!}$, we cat get what we want.

References

1. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
2. L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350.
3. J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory 31 (1989), 346-362.
4. J. Satoh, A construction of q-analogue of Dedekind sums, Nagoya Math. J. Vol. 127 (1992), 129-143.
5. J. Satoh, Construction of q-analogue by using Stirling numbers, Japan. J. Math. Vol. 20, No. 1 (1994), 73-91.
6. J. SATOH, Another look at the q-analogue from the viewpoint of Formal groups, Proc. Jangjeon Math. Soc. Vol. 1 (2000), 145-159.

Graduate School of Human Informatics, Nagoya University. Furo-cho Chikusa-ku, NAGOYA 464-8601, Japan

E-mail address: jsatoh@math.nagoya-u.ac.jp

